
Simulink® Report Generator™
User's Guide

R2021b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Report Generator™ User's Guide
© COPYRIGHT 1999–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
January 1999 First printing New (Release 11)
December 2000 Second printing Revised (Release 12)
June 2004 Third printing Revised for Version 2.02 (Release 14)
August 2004 Online only Revised for Version 2.1
October 2004 Online only Revised for Version 2.1.1 (Release 14SP1)
December 2004 Online only Revised for Version 2.2 (Release 14SP1+)
April 2005 Online only Revised for Version 2.2.1 (Release 14SP2+)
September 2005 Online only Revised for Version 2.3.1 (Release 14SP3)
March 2006 Online only Revised for Version 3.0 (Release 2006a)
September 2006 Online only Revised for Version 3.1 (Release 2006b)
March 2007 Fourth printing Revised for Version 3.2 (Release 2007a)
September 2007 Fifth printing Revised for Version 3.2.1 (Release 2007b)

This publication was previously for MATLAB® and
Simulink®. It is now for Simulink® only.

March 2008 Online only Revised for Version 3.3 (Release 2008a)
October 2008 Online only Revised for Version 3.4 (Release 2008b)
October 2008 Online only Revised for Version 3.5 (Release 2008b+)
March 2009 Online only Revised for Version 3.6 (Release 2009a)
September 2009 Online only Revised for Version 3.7 (Release 2009b)
March 2010 Online only Revised for Version 3.8 (Release 2010a)
September 2010 Online only Revised for Version 3.9 (Release 2010b)
April 2011 Online only Revised for Version 3.10 (Release 2011a)
September 2011 Online only Revised for Version 3.11 (Release 2011b)
March 2012 Online only Revised for Version 3.12 (Release 2012a)
September 2012 Online only Revised for Version 3.13 (Release 2012b)
March 2013 Online only Revised for Version 3.14 (Release 2013a)
September 2013 Online only Revised for Version 3.15 (Release 2013b)
March 2014 Online only Revised for Version 3.16 (Release 2014a)
October 2014 Online only Revised for Version 4.0 (Release 2014b)
March 2015 Online only Revised for Version 4.1 (Release 2015a)
September 2015 Online only Revised for Version 4.2 (Release 2015b)
October 2015 Online only Rereleased for Version 4.1.1 (Release 2015aSP1)
March 2016 Online only Revised for Version 5.0 (Release 2016a)
September 2016 Online only Revised for Version 5.1 (Release 2016b)
March 2017 Online only Revised for Version 5.2 (Release 2017a)
September 2017 Online only Revised for Version 5.3 (Release 2017b)
March 2018 Online only Revised for Version 5.4 (Release 2018a)
September 2018 Online only Revised for Version 5.5 (Release 2018b)
March 2019 Online only Revised for Version 5.6 (Release 2019a)
September 2019 Online only Revised for Version 5.7 (Release 2019b)
March 2020 Online only Revised for Version 5.8 (Release 2020a)
September 2020 Online only Revised for Version 5.9 (Release 2020b)
March 2021 Online only Revised for Version 5.10 (Release 2021a)
September 2021 Online only Revised for Version 5.11 (Release 2021b)

Getting Started
1

Simulink Report Generator Product Description . 1-2
Key Features . 1-2

Relationship Between Simulink Report Generator and MATLAB Report
Generator . 1-3

Finders and Reporters . 1-3
Web Views and Embedded Web Views . 1-4

System Design Documentation and Results Reporting 1-7
Types of Reports . 1-7
System Design Documentation . 1-7
Results Reporting . 1-7

Report Generation for Simulink and Stateflow Elements 1-9
Simulink Report API Classes . 1-10
Find and Report on Blocks in a Model . 1-12
Use Specific Finders and Reporters for Different Block Types 1-14
Find and Report on Stateflow Elements . 1-17

Generate Reports Without Customizing . 1-21
Predefined Standard Reports . 1-21
Report API . 1-21
Web View . 1-21

Report Creation Workflow . 1-23

Report Components . 1-24
About Report Components . 1-24
Report Structure Components . 1-24
System-Based Components . 1-24
User-Supplied Information Components . 1-25
Dynamic Reporting Components . 1-26
Format Control at the Component Level . 1-26

Working with the Report Explorer . 1-27
About the Report Explorer . 1-27

Acknowledgments . 1-28

v

Contents

Generate System Design Description Reports
2

System Design Description . 2-2
Predefined Standard Reports . 2-2
What Is the System Design Description? . 2-2
What You Can Do with the Report . 2-2
Report Contents . 2-3

Generate a System Design Description Report . 2-5

Customize the System Design Description . 2-6
Using the Report Explorer to Customize the Report 2-6
Building a Dialog Box for a Custom Report Setup File 2-7

Generate a System Design Report with the Report API 2-8

System Design Description
3

System Design Description Dialog Box . 3-2
System Design Description Overview . 3-2
Title . 3-2
Subtitle . 3-3
Authors . 3-3
Image . 3-4
Legal Notice . 3-4
Design details . 3-4
Model references . 3-5
Subsystems from custom libraries . 3-5
Requirements traceability . 3-6
Glossary and report explanation . 3-6
File format . 3-6
Stylesheet or Template . 3-7
File name . 3-9
Folder . 3-10
If report exists, increment name to prevent overwriting 3-10
Package type . 3-10

Creating Simulink Reports
4

Create a Simulink Report Generator Report . 4-2

Report on MATLAB Function . 4-13
Find and Report on MATLAB Function Blocks . 4-13
Find and Report on Stateflow MATLAB Functions 4-16
Customize MATLAB Function Reporter Output . 4-17

vi Contents

Use Simulink Report Explorer Components in a Report API Report . . . 4-20
Create the Report Explorer Setup File . 4-20
Create a Report Generator Program . 4-21

Report Systems Hierarchically . 4-25

Customize Simulink Diagram Hyperlinks in HTML and PDF Reports . . 4-27

Tile Simulink Diagrams . 4-29

Create a Simulink Bus Object Report . 4-32

Report System Inputs and Outputs . 4-34

Reporting on DocBlock Blocks . 4-37

Report Model Notes . 4-39

Report Execution Order of Tasks and Blocks in a Simulink System 4-41

Create a Simulink Report Generator Report Interactively 4-50
Specify Report Options in the Setup File . 4-50
Add Report Content with Components . 4-51
Generate the Report . 4-83

Generate a Report Associated with a Model . 4-86

Logical and Looping Components . 4-87

Filter with Loop Context Functions . 4-88
Create and Save the Setup File . 4-88
Add Components . 4-88
Run the Report . 4-89

Loop Context Functions . 4-90
For Simulink Modeling Elements . 4-90
For Stateflow Modeling Elements . 4-90

Export Simulink Models to Web Views
5

Web Views . 5-2
What Is a Web View? . 5-2
System Requirements . 5-2
Web View Files . 5-2

Export Models to Web View Files . 5-4

Display and Navigate a Web View . 5-5
Display a Web View When You Export It . 5-5
Open a Web View File in a Web Browser . 5-5

vii

View Contents of a System . 5-7
View Block Parameters and Signal Properties . 5-8
Access Optional Web View Information . 5-8

Search a Web View . 5-9
Perform a Search . 5-9
Sort Search Results . 5-10
Navigate Between Search Results and Model Elements 5-11

Create and Use a Web View of a Model . 5-12
Set Up the Browser . 5-12
Open the Model . 5-12
Create a Folder for the Web View Files . 5-12
Export the Model to a Web View . 5-12
Navigate a Web View . 5-13
Navigate the Web View of the slrgex_fuelsys Model 5-14
Display Parameters and Properties of Blocks and Signals 5-16
Move and Zoom in on Diagrams in the Model Viewer Pane 5-16
Open the Web View Outside of MATLAB . 5-16

Include Model Requirements and Coverage Data in a Web View 5-18
Prepare the Model for an Optional Web View . 5-18
Add Optional Views to a Web View Using the Web View Dialog Box 5-18
Add Optional Web Views Using slwebview . 5-18
Open an Optional Web View . 5-19

Embedded Web View Reports . 5-20
What Is Embedded Web View? . 5-20
Navigating an Embedded Web View Report . 5-21
Embedded Web View Packaging . 5-23
View Embedded Web View Reports . 5-23

Create an Embedded Web View Report Generator 5-24
Create an Embedded Web View Report Generator Class 5-24

Specify Export Options for Embedded Web View Report 5-25

Specify Document Content for Embedded Web View Report 5-26

Generate Table of Contents for Embedded Web View Report 5-27

Get Model Objects for Embedded Web View Report 5-28

Create Hyperlinks for Embedded Web View Report 5-29

Suppress Link Warning Messages for Embedded Web View Report 5-34

Generate an Embedded Web View Report . 5-35
Class Definition File for an Embedded Web View 5-35

Web View . 5-38
Web View Export Dialog Box Overview . 5-38
Systems to Export . 5-38
Referenced Models . 5-39
Library Links . 5-39

viii Contents

MathWorks Library Links . 5-39
Masked Subsystems . 5-39
Package name . 5-39
Folder . 5-39
If package exists, increment name to prevent overwriting 5-40
Package Type . 5-40
Include Model Coverage view . 5-40
Include Embedded Coder view . 5-40
Include Requirements view . 5-40
Include Coverage view . 5-41

Components
6

Classes
7

Functions
8

ix

Getting Started

• “Simulink Report Generator Product Description” on page 1-2
• “Relationship Between Simulink Report Generator and MATLAB Report Generator” on page 1-3
• “System Design Documentation and Results Reporting” on page 1-7
• “Report Generation for Simulink and Stateflow Elements” on page 1-9
• “Generate Reports Without Customizing” on page 1-21
• “Report Creation Workflow” on page 1-23
• “Report Components” on page 1-24
• “Working with the Report Explorer” on page 1-27
• “Acknowledgments” on page 1-28

1

Simulink Report Generator Product Description
Design and automatically generate reports from Simulink models and Stateflow charts

Simulink Report Generator provides functions and APIs that enable you to include block diagrams,
Stateflow® charts, MATLAB® Function blocks, truth tables, data dictionaries, and other model
elements in your reports. You can design and generate reports in PDF, Microsoft® Word, Microsoft
PowerPoint®, and HTML. You can generate standard reports such as system design descriptions, as
well as custom reports containing design artifacts such as generated code, requirements traceability,
documentation, and test results. Artifacts for DO-178, ISO 26262, IEC 61508, and related industry
standards can also be included.

Simulink Report Generator enables you to create web views that let you view, navigate, and share
Simulink models from a web browser without a Simulink license. You can embed model web views in
HTML code generation, requirements, coverage, and other types of reports.

Key Features
• Automated reporting from Simulink and Stateflow
• PDF, Microsoft Word, Microsoft PowerPoint, and HTML formats
• Templates for programmatic and forms-based reporting
• Automatic capture of simulation results and model specifications
• Web views for viewing and navigating models in web browsers
• Artifacts for DO-178 and IEC 61508

1 Getting Started

1-2

Relationship Between Simulink Report Generator and MATLAB
Report Generator

Simulink Report Generator extends MATLAB Report Generator by adding the ability to find and
report on Simulink block diagrams and elements and Stateflow charts and elements. Simulink Report
Generator also provides Web Views and Embedded Web Views of Simulink models.

Finders and Reporters
The Simulink Report API has finder classes that find and report on Simulink diagrams, subsystems,
blocks, annotations, and other elements. It also has finders for Stateflow, which find and report on
charts, states, transitions, and other elements. All of the finders are derived from the
mlreportgen.finder.Finder base class. In addition to finders, the Report API has reporter
classes, which you use to customize reporting on finder results. See “Report Generation for Simulink
and Stateflow Elements” on page 1-9 for more information and a full list of available finders and
reporters. In addition the finders and reporters, the MATLAB Report API and DOM API provide many
features useful for creating Simulink reports, such as title page, table of contents, and chapter
reporters.

This example shows results reported for Simulink blocks by the Report API BlockFinder class.

This example shows results reported for Stateflow transitions by the Report API
StateflowDiagramElementFinder class.

 Relationship Between Simulink Report Generator and MATLAB Report Generator

1-3

Web Views and Embedded Web Views
Simulink Report Generator also provides Web Views and Embedded Web Views. A Web View is an
interactive rendition of a Simulink model that you can view in a Web browser. An Embedded Web
View is an HTML report that contains one or more Web Views.

This example shows a Web View.

1 Getting Started

1-4

This example shows a portion of an Embedded Web View report.

See Also
mlreportgen.finder.Finder

 Relationship Between Simulink Report Generator and MATLAB Report Generator

1-5

More About
• “Report Generation for Simulink and Stateflow Elements” on page 1-9
• “What Is a Reporter?”
• “Create a Report Generator”
• “Create a Simulink Report Generator Report” on page 4-2
• “Create and Use a Web View of a Model” on page 5-12
• “Create an Embedded Web View Report Generator” on page 5-24

1 Getting Started

1-6

System Design Documentation and Results Reporting

Types of Reports
Two common goals for creating reports are:

• “System Design Documentation” on page 1-7 — Capture information about the design decisions,
structure, implementation, and operational details of a system.

• Results reporting on page 1-7 — Present results of running a system.

You use a similar workflow for creating and generating reports for both goals. However, some
components are particularly useful for each use case.

System Design Documentation
System documentation helps you to:

• Capture design decisions
• Record implementation details
• Communicate the system design and interfaces among groups

When you create a Simulink Report Generator report to provide system design documentation, the
report captures information about the system design from the model. Each time that you generate the
report, you see up-to-date documentation for the design.

The table includes examples of components that are useful for system design documentation reports.

System Information Examples of Components to Use
Requirements Requirements Summary Table (for requirements specified

with Simulink Requirements™)
System layout System Hierarchy, System Snapshot
Model configuration Model Configuration Set, Model Advisor Report
Block parameter settings Simulink Dialog Snapshot, Block Loop
Properties Simulink Property Table, Simulink Summary Table
Variables Variable Table, Simulink Workspace Variable
System documentation included in a
model

Documentation, Simulink Name

Results Reporting
Capturing results from simulating a model is useful for:

• Model regression testing
• Verifying and validating designs
• Exploring design alternatives
• Optimizing designs

 System Design Documentation and Results Reporting

1-7

The table includes examples of components that are useful in results reports.

Results Information Examples of Components to Use
Signal values Scope Snapshot, Block Loop
Simulation processing Model Simulation, Model Configuration Set, Fixed

Point Logging Options
Figures generated with MATLAB Figure Snapshot, To Workspace Plot
Generated code Code Generation Summary, Import Generated Code

You can use components such as the Model Simulation component to control how the model
simulates. Other components, such as the Scope Snapshot, show the results of the simulation.

1 Getting Started

1-8

Report Generation for Simulink and Stateflow Elements
Finders and reporters reduce the amount of time and complexity required to write code to find and
report on Simulink model elements, such as diagrams and blocks, and on Stateflow charts and
transitions, etc. The Simulink Report Generator Report API is a layer on top of the DOM API. Its
finders and reporters are based on the Simulink and Stateflow find base class. You specify the
container in which to find specific elements, such as blocks in a subsystem or states in a chart. Finder
objects return their results in a corresponding array of finder result objects.

The Simulink Report API also includes reporter classes, which return an image of the container. This
image is the top level of a model.

Every result object returned by a finder has an associated reporter object, which reports on those
results. The reporter object holds the content and formats the content, such as tables of properties
and data plots. You add the reporter objects to your reports. Use the MATLAB Report API reporters to
define common report elements. See “What Is a Reporter?” for information.

All finders and reporters have these features:

• Default behaviors and values
• Allow overriding and customizing their output

All finders have find, hasNext, and next methods. The find method finds and returns in an array
of result objects all elements for each found element of the specified type. The hasNext and next
methods find and return one element at a time and are used to iterate over a list of results. The
hasNext method checks whether the container has at least one of the element of the specified type.
If the container has one or more of the elements, then the hasNext method queues it for the next
method to find and return as a result object.

All reporters have predefined templates. The template for each reporter defines its formatting, layout,
and content holes. You do not need to change the template or specify any formats, layouts, or holes

 Report Generation for Simulink and Stateflow Elements

1-9

unless you want a customized report. You can customize your report by copying and editing its
default template or by using a new template. Editing a copy of the default template gives you a
starting point and structure to follow to customize your template. Using a new template lets you
completely define your template starting with a blank file. To change the order of the report content,
reorder the holes in the template. Finders do not use templates. Another way to customize a reporter
class is by subclassing it.

The default reporter templates for each output type are in a template library, which is at

matlab\toolbox\shared\slreportgen\rpt\rpt\+slreportgen\
 +report\@<reporter>\resources\templates\<output>

For example, the path to the default template for the DiagramReporter for PDF output is

matlab\toolbox\shared\slreportgen\rpt\rpt\+slreportgen\
 +report\@DiagramReporter\resources\templates\pdf\default.pdftx

For a detailed example of editing a template, see the "Customize a Report API Template" section of
“What Is a Reporter?”

Simulink Report API Classes
The Simulink Report API provides these finder, result, and reporter classes. To use these classes in a
report generator program, you must create a container of type slreportgen.report.Report to
hold the report.

Finder and Result Classes

Report API Class Description
slreportgen.finder.AnnotationFinder Finds Simulink block diagram annotations.
slreportgen.finder.BlockFinder Finds blocks in a Simulink block diagram.
slreportgen.finder.BlockResult Contains a block found by a BlockFinder

object.
slreportgen.finder.ChartDiagramFinder Finds Stateflow charts in a model.
slreportgen.finder.DataDictionaryFinde
r

Finds Simulink data dictionaries.

slreportgen.finder.DataDictionaryResul
t

Contains a data dictionary found by a
DataDictionary object.

slreportgen.finder.DiagramElementFinde
r

Finds elements of a Simulink block diagram or
Stateflow chart.

slreportgen.finder.DiagramElementResul
t

Contains a diagram element found by a
DiagramElementFinder object.

slreportgen.finder.DiagramFinder Finds block diagrams and charts in a Simulink
model.

slreportgen.finder.DiagramResult Contains a diagram found by a DiagramFinder
object.

slreportgen.finder.ModelVariableFinder Finds variables used by a Simulink model.

1 Getting Started

1-10

Report API Class Description
slreportgen.finder.ModelVariableResult Contains a model variable found by a

ModelVariableFinder object.
slreportgen.finder.SignalFinder Finds signals used by a model or block.
slreportgen.finder.SignalResult Contains a signal found by a SignalFinder

object.
slreportgen.finder.StateFinder Finds states in a Stateflow chart.
slreportgen.finder.StateflowDiagramEle
mentFinder

Finds elements of a Stateflow chart.

slreportgen.finder.SystemDiagramFinder Finds system block diagrams in a Simulink model.

Reporter Classes

Report API Class Description
slreportgen.report.Bus Reports on buses selected or created by Simulink

blocks.
slreportgen.report.BusObject Reports on Simulink.Bus objects use by a

model.
slreportgen.report.CFunction Reports on a C Function block.
slreportgen.report.DataDictionary Reports on a Simulink data dictionary.
slreportgen.report.Diagram Creates a snapshot of a Simulink block diagram

or a Stateflow chart.
slreportgen.report.DocBlock Reports on a Simulink DocBlock.
slreportgen.report.ElementDiagram Reports on an element diagram snapshot and

caption
slreportgen.report.ExecutionOrder Reports on the tasks of a model or nonvirtual

subsystem and the blocks in each task, sorted by
execution order.

slreportgen.report.LookupTable Reports on breakpoints and output points of a
Simulink lookup table block.

slreportgen.report.MATLABFunction Reports on a MATLAB Function block or a
Stateflow MATLAB function.

slreportgen.report.ModelConfiguration Reports on the active configuration set of a
model.

slreportgen.report.ModelVariable Reports on a model variable.
slreportgen.report.Notes Reports on Simulink or Stateflow diagram notes.
slreportgen.report.Signal Reports on a signal.
slreportgen.report.SimulinkObjectPrope
rties

Creates a table of the properties of a Simulink
object.

slreportgen.report.StateflowObjectProp
erties

Creates a table of the properties of a Stateflow
object.

slreportgen.report.SystemHierarchy Creates a nested list of the subsystems of a
Simulink model or subsystem.

 Report Generation for Simulink and Stateflow Elements

1-11

Report API Class Description
slreportgen.report.SystemIO Reports on Simulink system input and output

signals.
slreportgen.report.TestSequence Reports on a Simulink Test Sequence block.
slreportgen.report.TruthTable Reports on a Simulink truth table block or a

Stateflow truth table object.

Find and Report on Blocks in a Model
This example shows how to find and report on all Simulink blocks in the slrgex_vdp model using
the BlockFinder class. The resulting HTML report includes default information and uses default
formatting for each block.

1 Import the Report API package, which let you use class names without including their package
names. For example, you can use BlockFinder instead of
slreportgen.finder.BlockFinder. In addition to importing the Simulink Report API base
classes, import the MATLAB Report API base class. A typical report includes a title page, table of
contents, chapters, and sections, which you include as reporter classes in the MATLAB Report
API.

import slreportgen.finder.*
import slreportgen.report.*
import mlreportgen.report.*

2 Load the slrgex_vdp model.

model_name = 'slrgex_vdp';
load_system(model_name)

3 Create the container object to hold the report and open the report. In this case, the output report
is saved in zipped slrgex_vdp_model.htmx HTML report. You can use any output name you
want. If you run the report generator more than once using the same output file name, the output
file is overwritten. To use Simulink Report API finders and reporters in your report generator
program, you must use the fully qualified name to create the container object.

rpt = slreportgen.report.Report('slrgex_vdp_model','html');
open(rpt)

4 Add a chapter and specify its title.

ch = Chapter('Blocks in slrgex_vdp model');
5 Use the BlockFinder class to create a finder. In this case, the BlockFinder finds all the blocks

in the model. Use the find method to find the blocks specified by the finder.

finder = BlockFinder(model_name);
results = find(finder);

6 Loop through the results of the find method and create a section for each block, and add the
block property table to the section. Then, add each section to the chapter. After all blocks have
been added, add the chapter to the report.

for result = results
 sect = Section('Title',result.Name);
 append(sect,result)
 append(ch,sect)
end
append(rpt,ch);

1 Getting Started

1-12

7 Close the report and model, and view the report.

close(rpt);
close_system(model_name);
rptview(rpt);

The full program is

import slreportgen.finder.*
import slreportgen.report.*
import mlreportgen.report.*

model_name = 'slrgex_vdp';
load_system(model_name);

rpt = slreportgen.report.Report('slrgex_vdp_model','html');
open(rpt)

ch = Chapter('Blocks in slrgex_vdp model');
finder = BlockFinder(model_name);
results = find(finder);
for result = results
 sect = Section('Title',result.Name);
 append(sect,result)
 append(ch,sect);
end
append(rpt,ch);

close(rpt)
close_system(model_name)
rptview(rpt)

The chapter heading and the section headings and property tables of the first two blocks of the
resulting report are shown.

 Report Generation for Simulink and Stateflow Elements

1-13

Use Specific Finders and Reporters for Different Block Types
Create a PDF report generator that finds all blocks in the slrgex_radar_eml model.

To find all blocks, use the BlockFinder. The if statement shows how to test for MATLAB Function
blocks. Use the MATLABFunction reporter to report MATLAB Function block details. The else
statement shows how blocks other than MATLAB Function blocks use the BlockFinder find
method results.

blkfinder = BlockFinder(model_name);
blks = find(blkfinder);

if slreportgen.utils.isMATLABFunction(blks(i).Object)
 rptr = MATLABFunction(blks(i).Object);
 sec = Section(blks(i).Name);
 append(sec,rptr)
 append(ch,sec)

else
 sec = Section(blks(i).Name);
 append(sec,blks(i))
 append(ch,sec)

blkfinder = BlockFinder(model_name);
blks = find(blkfinder);

The full program is

import slreportgen.report.*
import slreportgen.finder.*
import mlreportgen.report.*

1 Getting Started

1-14

model_name = 'slrgex_radar_eml';
load_system(model_name)

rpt = slreportgen.report.Report('radar','pdf');
open(rpt)

blkfinder = BlockFinder(model_name);
blks = find(blkfinder);
ch = Chapter('Blocks in slrgex_radar_eml Model');

for i=1:length(blks)
 if slreportgen.utils.isMATLABFunction(blks(i).Object)
 rptr = MATLABFunction(blks(i).Object);
 sec = Section(blks(i).Name);
 append(sec,rptr)
 append(ch,sec)
 else
 sec = Section(blks(i).Name);
 append(sec,blks(i))
 append(ch,sec)
 end
end
append(rpt,ch)

close(rpt)
close_system(model_name)
rptview(rpt)

An example of the information reported for a MATLAB Function block by the MATLABFunction
reporter is:

 Report Generation for Simulink and Stateflow Elements

1-15

An example of the information reported by the find method of the BlockFinder is:

1 Getting Started

1-16

Find and Report on Stateflow Elements
This example describes how to find and report on Stateflow states, transitions, and junctions. It
reports on the control_logic chart of the slrgex_fuelsys_fuel_rate_control model.

This portion of the code uses a StateFinder object and its find method to find and report on states
in the chart. It loops through the array of found states and adds each one to the chapter.

stFinder = StateFinder(subsys);
states = find(stFinder);
for state = states
 append(chapter,state)
end
append(rpt,chapter)

 Report Generation for Simulink and Stateflow Elements

1-17

To report on the transitions, use a StateflowDiagramElementFinder object and its find method.
To show the property table with a narrower width than the default, customize the output. First, obtain
the reporter for the result. To set the width, use the TableWidth property of the reporter.

chapter = Chapter("Title","Transitions");
trFinder = StateflowDiagramElementFinder...
 ("Container",subsys,"Types","transition");
transitions = find(trFinder);
for transition = transitions
 rptr = transition.getReporter;
 rptr.PropertyTable.TableWidth = "3in";
 append(chapter,rptr)
end
append(rpt,chapter)

1 Getting Started

1-18

The complete program is

import mlreportgen.report.*
import slreportgen.report.*
import slreportgen.finder.*

model_name = "slrgex_fuelsys_fuel_rate_control";
load_system(model_name);
subsys = "slrgex_fuelsys_fuel_rate_control/control_logic";

rpt = slreportgen.report.Report("output","pdf");
open(rpt)

tp = TitlePage("Title",...
 "Control Logic Chart of slrgex_fuelsys_fuel_rate_control");
append(rpt,tp)
append(rpt,TableOfContents);

chapter = Chapter("Title","States");
stFinder = StateFinder(subsys);
states = find(stFinder);
for state = states
 append(chapter,state)
end
append(rpt,chapter)

 Report Generation for Simulink and Stateflow Elements

1-19

chapter = Chapter("Title","Transitions");
trFinder = StateflowDiagramElementFinder...
 ("Container",subsys,"Types","transition");
transitions = find(trFinder);
for transition = transitions
 rptr = transition.getReporter;
 rptr.PropertyTable.TableWidth = "3in";
 append(chapter,rptr)
end
append(rpt,chapter)

close(rpt)
close_system(model_name)
rptview(rpt)

See Also
slreportgen.report.Report

More About
• “Relationship Between Simulink Report Generator and MATLAB Report Generator” on page 1-3
• “What Is a Reporter?”
• “Templates”

1 Getting Started

1-20

Generate Reports Without Customizing
In this section...
“Predefined Standard Reports” on page 1-21
“Report API” on page 1-21
“Web View” on page 1-21

You can use Simulink Report Generator without customizing reports by using:

• Predefined standard reports
• Report API objects
• Web view

Predefined Standard Reports
Simulink Report Generator comes with two predefined, standard reports for Simulink:

• System Design Description Report
• System Requirements (requires Simulink Requirements)

The System Design Description Report provides summary or detailed information about a system
design represented by a model. You can choose report options by using the report dialog box, or you
can create a customized version using the Report Explorer. You can use the System Design
Description report setup file as a starting point for creating a setup file for your own report. For
details, see “Generate a System Design Description Report” on page 2-5.

The System Requirements report includes information about all the requirements associated with the
model and its objects. You must have Simulink Requirements installed to use the System
Requirements report.

To generate the System Requirements report from the Simulink Toolstrip:

1 If the Requirements tab is not available, on the Apps tab, in the Model Verification,
Validation, and Test section, click Requirements Manager.

2 On the Requirements tab, in the Share section, click Share > Generate Model Traceability
Report.

Report API
The Report API, which is based on the DOM API, is a set of document objects, such as title page, table
of contents, chapter, and figure objects, that do the work of dozens of lines of code based on DOM
objects. As a result, the Report API greatly reduces the amount of code needed to generate reports.
As with the DOM API, you can add content to your report in the form of built-in MATLAB objects,
such as strings, number and character arrays, and cell arrays. The Report API converts these to DOM
objects before adding them to your report. You can also use text, paragraph and other DOM objects
directly to format the content that you add to your report.

Web View
A web view is a view of a model that you can explore in a web browser. Web views are useful for
presenting models to audiences and for sharing models with colleagues who do not have MathWorks®

 Generate Reports Without Customizing

1-21

products installed. You can use web views to navigate subsystems and see properties of blocks and
signals. For details, see “Export Models to Web View Files” on page 5-4.

1 Getting Started

1-22

Report Creation Workflow
Use this general approach for creating reports interactively.

1 Open the Report Explorer. In the Simulink Toolstrip, on the Apps tab, under Simulation
Graphics and Reporting, click Report Generator.

2 Create a report setup file for your new report design.
3 Add components to the report setup file. Components determine the behavior and contents of

your report. You can use the supplied components and you can create your own custom
components.

4 Choose a Microsoft Word, HTML, or PDF template or a Report Explorer style sheet to associate
styles with the report setup file.

5 Generate the report.

To create reports programmatically using the Report API and DOM API, see “Report Generator
Development” and “Create Report Programs”.

See Also

Related Examples
• “Generate a Report Using a Template”
• “Add Report Content with Components” on page 4-51

More About
• “Report Setup”
• “Layout Style Sheets”

 Report Creation Workflow

1-23

Report Components

In this section...
“About Report Components” on page 1-24
“Report Structure Components” on page 1-24
“System-Based Components” on page 1-24
“User-Supplied Information Components” on page 1-25
“Dynamic Reporting Components” on page 1-26
“Format Control at the Component Level” on page 1-26

About Report Components
Include components in a report setup file to specify report behavior and insert content, such as
tables, lists, and figures, into a report. Use the Report Explorer on page 1-27 to add components to a
report and to specify their behavior.

Use a combination of these types of components in your report setup file.

Component Type Description
“Report Structure Components” on page 1-24 Include a title page, sections, and other

components to organize the content of a report.
“System-Based Components” on page 1-24 Include components that obtain information

directly from a model to include in a report.
“User-Supplied Information Components” on
page 1-25

Include text and graphics that you supply,
independent of a model.

“Dynamic Reporting Components” on page 1-26 Set up dynamic control for when to include
components and what information to report on
for a component, based on data from a model or
on other conditions that you specify.

Report Structure Components
To add a title page, use a Title Page component. You can include an abstract and legal notice
information. For an example, see “Add a Title Page” on page 4-57.

To organize a report into sections, use Chapter/Subsection components. For an example, see
“Create a Section for Each Iteration” on page 4-69.

System-Based Components
The Simulink Report Generator includes components that get information from a model to include in
a report. Using system-based components allows your report to describe the current state of a model.
Once the setup file contains these components, you can generate the report whenever you want to
capture the latest version of a model.

1 Getting Started

1-24

Property table components display property name/property value pairs for objects in tables. Summary
table components insert tables that include specified properties for objects into generated reports.
The tables contain one object per row, with each object property appearing in a column.

To use descriptive information from DocBlock blocks, use the Documentation component.

A few examples of system-based components include:

• MATLAB Property Table
• Simulink Workspace Variable
• System Hierarchy
• Simulink Summary Table
• Simulink Dialog Snapshot
• Block Execution Order List
• Model Loop
• Model Configuration Set
• Scope Snapshot

For examples of using system-based components, see:

• “Property Table Components”
• “Summary Table Components”
• “Create the Body of the Report” on page 4-63

The Simulink Report Generator also includes system-based components that contain model elements
from the following Simulink products:

• Stateflow
• Fixed-Point Designer™
• Simulink Coder™
• Simulink Check™
• Simulink Requirements

User-Supplied Information Components
In addition to using system-based components to extract data from a system and insert that
information into a report, you can also add content that you, or others, supply. For example, to
include text, use the Paragraph and Text components.

To insert a graphic from a file, use an Image component. To insert ASCII text, use an Import File
component.

To include notes about the report source files, use a Comment component.

For an example, see “Add Introductory Text to the First Chapter”.

 Report Components

1-25

Dynamic Reporting Components
Dynamic reporting components execute conditionally, enabling you to decide when a child component
executes or how many times a child component executes. To control the report generation flow, use
logical and flow components such as Logical If, Logical Then, While Loop, or For Loop.

A looping component runs its child components a specified number of times. There are several
looping components, including logical loops, Handle Graphics® loops, and model and chart loops. For
model and chart loops, you can control aspects such as the order in which the report sorts blocks.

For examples, see:

• “Logical and Looping Components”
• “Add Logical Then and Logical Else Components” on page 4-60
• “Create the Body of the Report” on page 4-63
• “Filter with Loop Context Functions” on page 4-88

Format Control at the Component Level
The output format and stylesheet that you select for a report determines most aspects of the
generated report formatting. For details, see “Report Output Format”.

In addition to stylesheets that control the format and layout of the report, for some components you
can set properties to specify formatting details for that specific instance of a component. For
example, for the Simulink Property Table, you can specify whether to display table borders or
specify the alignment of text in table cells.

1 Getting Started

1-26

Working with the Report Explorer

About the Report Explorer
The Report Explorer is the MATLAB Report Generator and Simulink Report Generator graphical
interface. It allows you to:

• Create and modify report setup files.
• Apply style sheets to format the generated report.
• Specify the report file format.
• Generate reports.

To open the Report Explorer, enter report in the MATLAB Command Window.

• The Outline pane on the left shows the hierarchy of components in currently opened report setup
files. Report components can reside within other report components, creating parent, child, and
sibling relationships.

• The Library pane in the middle lists the objects available in the context of the Outline pane.

Outline Pane Context Library Pane Contents
No report setup file is open. Reports
Report setup file is open. Components
Style sheet is open. Style sheet attributes

• The Properties pane contents depend on the Outline pane context. If no report setup file is open,
on the right displays tasks the Report Explorer can perform. If a report setup file is open, the
Properties pane displays the properties for the item that is currently selected in the Library pane.

Outline Pane Context Properties Pane Contents
No report setup file is open. Tasks that the Report Explorer can perform
Report setup file is open. Properties for the item that is currently

selected

After you create a report setup file, the
Properties pane initially displays properties
for the report setup file as a whole.

Tip If the Report Explorer window opens with only two panes, one of the panes is hidden. You can
move the vertical boundaries between the panes to reveal any hidden pane, or to make visible panes
wider or narrower.

 Working with the Report Explorer

1-27

Acknowledgments
Simulink Report Generator uses Antenna House® XSL Formatter. Antenna House is a trademark of
Antenna House, Inc.

Antenna House XSL Formatter© 2009–2019 Copyright Antenna House, Inc.

1 Getting Started

1-28

Generate System Design Description
Reports

• “System Design Description” on page 2-2
• “Generate a System Design Description Report” on page 2-5
• “Customize the System Design Description” on page 2-6
• “Generate a System Design Report with the Report API” on page 2-8

2

System Design Description
In this section...
“Predefined Standard Reports” on page 2-2
“What Is the System Design Description?” on page 2-2
“What You Can Do with the Report” on page 2-2
“Report Contents” on page 2-3

Predefined Standard Reports
From the Simulink Toolstrip, you can generate two predefined, standard Simulink Report Generator
reports called:

• System Design Description
• System Requirements Traceability

The System Design Description report provides summary or detailed information about a system
design represented by a model. You can choose report options using the report dialog, or you can
create a customized version using the Report Explorer. For details, see “Generate a System Design
Description Report” on page 2-5.

You can use the System Design Description report setup file as a starting point for creating a setup
file for your own report. For more information, see “Print Model Reports”.

The System Requirements Traceability report requires that you have Simulink Requirements
installed. The System Requirements Traceability report includes information about all the
requirements associated with the model and its objects.

Follow these steps to generate the System Requirements Traceability report from the Simulink
Toolstrip:

1 If the Requirements tab is not available, on the Apps tab, in the Model Verification,
Validation, and Test section, click Requirements Manager.

2 On the Requirements tab, in the Share section, click Share > Generate Model Traceability
Report.

What Is the System Design Description?
The System Design Description is a prebuilt Simulink Report Generator report that describes the
system design represented by a Simulink model.

By default, the Simulink Report Generator generates the report for the model from which you invoke
the System Design Description report option.

What You Can Do with the Report
You can use the System Design Description to

• Review a system design without having the model open

2 Generate System Design Description Reports

2-2

• Generate summary and detailed descriptions of the design
• Assess compliance with design requirements
• Archive the system design in a format independent of the modeling environment
• Build a customized version of the report, using the Report Explorer

Report Contents
You can specify what kinds of information to include in the report, in terms of:

• What elements of a model to include in the report (for example, whether to include subsystems
from custom libraries)

• Whether to generate a summary version or a detailed version of the System Design Description
report.

For details, see “Generate a System Design Description Report” on page 2-5.

Summary Version

Section Information
Report Overview Model version
Root System • Block diagram representing the algorithms that compute root

system outputs
• Description (if available from model)
• Interface: name, data type, and other properties of the system

input and output signals
• Subsystems: the path and a block diagram for each subsystem
• State charts
• Requirements (optional)

Subsystems • Path
• Block diagram

System Design Variables • Design variables
• Functions in design variable expressions

Detailed Version

The detailed version of the report includes all the information that is in the summary form of the
report, as well as more information about the system components. The atomic subsystem information
is more detailed than virtual subsystem information.

Section Information
Report Overview Model version

 System Design Description

2-3

Section Information
Root system • Block diagram representing the algorithms that compute root

system outputs
• Description (if available from model)
• Interface: name, data type, and other properties of the root

system input and output signals
• Block parameters

• Includes detailed information about MATLAB Function
blocks

• Block execution order for root system and atomic subsystems
• Look-up tables
• Simulink workspace variables
• Model configuration sets
• State charts
• Requirements (optional)

Subsystems The same type of information as the information for the root
system, as well as:

• Path of the subsystem in the model
• (For atomic subsystems) Checksum that indicates whether the

version of an atomic subsystem that generates the report
differs from other versions of the subsystem

• Referenced models (optional)
• Subsystems from custom libraries (optional)

State Charts • State chart
• States
• Transitions between the states
• Junctions
• Events that trigger state transitions
• Data types
• Targets
• Truth tables

Report Captures Documentation Included in a Model

The System Design Description reports documentation included in a model, including:

• The model description (from the model properties)
• The block property Description
• DocBlock model documentation blocks

To enrich the generated System Design Description, add corresponding information in the model.

2 Generate System Design Description Reports

2-4

Generate a System Design Description Report
Generate a system design description report to create a standard report of your model from the
Simulink Editor. The System Design Description report provides summary or detailed information
about a system design represented by a model.

When you generate the report, you can specify layout and content options for:

• Title page contents
• Report content
• Report file format and storage location

Tip For faster report generation, set File format to one of the from template options. For
example, select Direct PDF (from template) to output to PDF.

1 Open the model or subsystem for which you want to generate a report. The model must compile
without error for the report to generate.

2 On the Modeling tab, in the Design section, click System Design Report.
3 In the Design Description dialog box, specify layout and content options for the report. To display

detailed information about each option, right-click the label and select What's This.
4 Click Generate.

To create a customized version of the report, click Customize Content. This option creates a copy of
the report setup file and opens the copy in the Report Explorer. See “Customize the System Design
Description” on page 2-6.

See Also

More About
• “System Design Description” on page 2-2

 Generate a System Design Description Report

2-5

Customize the System Design Description
In this section...
“Using the Report Explorer to Customize the Report” on page 2-6
“Building a Dialog Box for a Custom Report Setup File” on page 2-7

You can create customized versions of the System Design Description report by using the Report
Explorer and, optionally the MATLAB tools for building graphical user interfaces.

By default, when you open a customized version of the report, the System Design Description dialog
box does not open.

Using the Report Explorer to Customize the Report
To customize the System Design Description setup file in the Simulink Report Generator using the
Report Explorer:

1 In the System Design Description dialog box, click the Customize Content button to open the
Report Explorer.

The Report Explorer reflects any changes (for example, a different report name) that you made in
the System Design Description dialog box.

2 In the Report Explorer, add or modify components. See “Add Report Content with Components”
on page 4-51 and “Information Components”.

• Do not remove the sdd_custom_data structure, which is defined as:

sdd_custom_data = struct('model',bdroot,'rootSystem',gcs);

You can modify the model argument, which is the model for which you generated the report
and the rootSystem argument, which is the system-level in the model at which, and below
which, you want to use to generate the report.

• Do not remove or modify functions that begin with StdRpt, such as %StdRpt.getChecksum
3 Optionally modify a style sheet (see “Layout Style Sheets”).
4 Save the customized report with a name other than SDD_custom.rpt.

2 Generate System Design Description Reports

2-6

Building a Dialog Box for a Custom Report Setup File
To provide options for your custom report, you can create a dialog box, like the System Design
Description dialog box. The dialog box that you create for your custom report can allow others to
adapt the report to meet their needs, without their having to use the Report Explorer.

 Customize the System Design Description

2-7

Generate a System Design Report with the Report API
This example shows how to generate a Report API-based system design report. The system design
report is a description of the design of a dynamic system generated from the Simulink® model of the
system.

A Report API-based system design report uses objects of Report API classes to report on system
components. See “Report Generation for Simulink and Stateflow Elements” on page 1-9.

The gensdd Function

The gensdd function, which is included with this example, generates a report that includes these
sections:

• Title Page
• Table of Contents
• List of Figures
• List of Tables
• System Hierarchy
• Root System chapter that contains the root block diagram, task and block execution order, and

properties of each block in the root diagram
• SubSystems chapter that contains the diagram, block execution order, and block properties of the

model subsystems
• Charts chapter that contains the charts and chart object properties of each of the model charts
• Design Data chapter that contains the model variables
• System Model Configuration chapter that contains details about the active configuration set for

the model

The complete gensdd function is listed at the end of this example. You can modify the gensdd.m
file to create a custom system design report.

Generate a PDF System Design Report for the slrgex_sf_car Model

Generate a system design report for the slrgex_sf_car model and specify that the document is a
PDF.

gensdd('slrgex_sf_car','PDF');

Here is the first page of the report:

2 Generate System Design Description Reports

2-8

A copy of the report is included with this example in the file sdd_slrgex_sf_car_copy.pdf.

Customize the Report

The gensdd function uses objects of these Report API classes to find system design elements and
report on the system design:

• slreportgen.report.SystemHierarchy
• slreportgen.report.Diagram
• slreportgen.report.SystemIO
• slreportgen.report.ExecutionOrder
• slreportgen.report.ModelConfiguration
• slreportgen.finder.SystemDiagramFinder
• slreportgen.finder.ChartDiagramFinder
• slreportgen.finder.DiagramResult
• slreportgen.finder.StateflowDiagramElementFinder
• slreportgen.finder.DiagramElementResult

 Generate a System Design Report with the Report API

2-9

• slreportgen.report.LookupTable
• slreportgen.report.StateflowObjectProperties
• slreportgen.report.TruthTable
• slreportgen.finder.ModelVariableFinder
• slreportgen.finder.ModelVariableResult
• slreportgen.report.ModelVariable
• slreportgen.finder.BlockFinder
• slreportgen.finder.BlockResult
• slreportgen.report.CFunction
• slreportgen.report.DocBlock
• slreportgen.report.MATLABFunction
• slreportgen.report.SimulinkObjectProperties
• slreportgen.report.TestSequence
• slreportgen.report.Bus

You can use the properties of these objects to filter and format the information that is reported. For
example, in the makeSystemHierarchy function in the gensdd.m file, you can change the system
hierarchy list format to an ordered list by setting the ListFormatter property of the
slreportgen.report.SystemHierarchy reporter.

function makeSystemHierarchy(rpt, hModel)
% Create a chapter reporting on the system hiearchy
import mlreportgen.report.*
import slreportgen.report.*
ch = Chapter("Title", "System Hierarchy");
ol = mlreportgen.dom.OrderedList();
add(ch,SystemHierarchy("Source",hModel,"ListFormatter",ol));
add(rpt, ch);
end

The report also uses objects of these Report API classes to create and format the sections of the
report:

• mlreportgen.report.TitlePage
• mlreportgen.report.TableOfContents

2 Generate System Design Description Reports

2-10

• mlreportgen.report.ListOfFigures
• mlreportgen.report.ListOfTables
• mlreportgen.report.Chapter
• mlreportgen.report.Section

You can customize the appearance of the report and sections. See “Report Formatting Approaches”.

The Complete gensdd Function

 type gensdd.m

function gensdd(model,doctype)
%GENSDD Generates a system design description from the system's model
% gensdd() generates a PDF system design description for the
% slrgex_sf_car model.
%
% gensdd(model) generates a PDF system design description for the
% specified model.
%
% gensdd(model, doctype) generates a system design description document
% from the specified model and document type: 'html', 'docx', or 'pdf'.
%
% The generated document is a description of a dynamic system's design
% generated from its Simulink model. The description contains the
% following sections:
%
% * Title Page
% * Table of Contents
% * List of Figures
% * List of Tables
% * System Hierarchy
% * Root System Chapter -- Contains root block diagram, task and block
% execution order, and properties of each block in the root diagram.
% * Subsystems Chapter -- Contains diagram, block execution order, and
% block properties of model's subsystems.
% * Charts Chapter -- Contains charts and chart object properties of each
% of the model's charts.
% * Design Data Chapter -- Contains the model variables.
% * System Model Configuration Chapter -- Contains details about the
% active configuration set for the model.

import mlreportgen.dom.*
import mlreportgen.report.*
import slreportgen.report.*

if nargin < 1
 model = 'slrgex_sf_car';
 doctype = 'pdf';
end

if nargin < 2
 doctype = 'pdf';
end

hModel = load_system(model);
rpt = slreportgen.report.Report(['sdd_' get_param(model, 'Name')], doctype);
open(rpt);

 Generate a System Design Report with the Report API

2-11

makeTitlePage(rpt, hModel);
add(rpt, TableOfContents);
add(rpt, ListOfFigures);
add(rpt, ListOfTables);
makeSystemHierarchy(rpt, hModel);
makeRootSystemChapter(rpt, hModel);
makeSubsystemsChapter(rpt, hModel);
makeChartsChapter(rpt, hModel);
makeDesignDataChapter(rpt, hModel);
makeModelConfigurationChapter(rpt, hModel);

close(rpt);
rptview(rpt);

close_system(model);

end

function makeTitlePage(rpt, hModel)
import mlreportgen.report.*
import slreportgen.report.*

tp = TitlePage;
tp.Title = upper(get_param(hModel, 'Name'));
tp.Subtitle = 'System Design Description';
tp.Author = 'John Doe';

diag = Diagram(hModel);
diag.Scaling = 'custom';
diag.Height = '2in';
diag.Width = '3in';
tp.Image = getSnapshotImage(diag, rpt);
add(rpt, tp);
end

function makeSystemHierarchy(rpt, hModel)
% Create a chapter reporting on the system hierarchy
import mlreportgen.report.*
import slreportgen.report.*
ch = Chapter("Title", "System Hierarchy");
add(ch,SystemHierarchy(hModel));
add(rpt, ch);
end

function makeRootSystemChapter(rpt, hModel)
% Create a chapter reporting on the root system diagram and its blocks
% and add the chapter to the main report.
import mlreportgen.report.*
import slreportgen.report.*
import slreportgen.finder.*

ch = Chapter("Title", "Root System");
diag = Diagram(hModel);
add(ch, diag);

add(ch, SystemIO(hModel));

2 Generate System Design Description Reports

2-12

% Add block execution order section
makeExecutionOrderSection(ch, hModel);

% Add subsections containing the properties for each block in the
% subsystem diagram.
makeBlockSections(ch, hModel);

add(rpt, ch);
end

function makeSubsystemsChapter(rpt, hModel)
% Create a chapter reporting on a model's subsystems and the blocks that
% they contain and add the chapter to the main report.
import mlreportgen.report.*
import slreportgen.report.*
import slreportgen.finder.*

% Create a chapter to hold the subsystems.
ch = Chapter("Title", "Subsystems");

% Use a finder to find all the subsystem diagrams in the model. The finder
% returns an array of SystemDiagramResult objects, each of which
% contains a Diagram reporter that creates a snapshot of the subsystem
% diagram
finder = SystemDiagramFinder(hModel);
finder.IncludeRoot = false;
systems = find(finder);

% Add the subsystem diagram results to the chapter.
for system = systems

 % Create a subsection to contain the subsystem diagram.
 section = Section("Title", system.Name);

 % Add the subsystem diagram reporter to the diagram subsection.
 % Add the subsystem diagram results to the chapter.
 diag = getReporter(system);
 diag.MaskedSystemLinkPolicy = 'system';
 add(section, diag);

 ioSect = Section('Title', 'System Interface');
 add(ioSect, SystemIO('Object', system, 'ShowDetails', false));
 add(section, ioSect);

 % If the subsystem is nonvirtual, add a subsection detailing the block
 % execution order
 if strcmp(get_param(system.Object, "IsSubsystemVirtual"), "off")
 makeExecutionOrderSection(section, system);
 end

 % Add subsections containing the properties for each block in the
 % subsystem diagram.
 makeBlockSections(section, system);

 % Add the subsystem diagram section to the chapter.
 add(ch, section);
end

 Generate a System Design Report with the Report API

2-13

% Add the subsystems chapter to the main report.
add(rpt, ch);

end

function makeChartsChapter(rpt, hModel)
% Create a chapter reporting on a model's Stateflow charts and the objects
% that they contain and add the chapter to the main report.

import mlreportgen.report.*
import slreportgen.report.*
import slreportgen.finder.*

finder = ChartDiagramFinder(hModel);
charts = find(finder);

if ~isempty(charts)
 ch = Chapter("Title", "Charts");
 for chart = charts
 section = Section("Title", chart.Name);
 diag = getReporter(chart);
 add(section, diag);

 % Report the objects in this chart
 objFinder = StateflowDiagramElementFinder(chart);
 sfObjects = find(objFinder);
 for sfObj = sfObjects
 objSection = Section("Title", sfObj.Name);
 add(objSection, sfObj);
 add(section, objSection);
 end

 add(ch, section);
 end
 add(rpt, ch);
end

end

function makeDesignDataChapter(rpt, hModel)
% Create a chapter reporting on the model variables

import mlreportgen.dom.*
import mlreportgen.report.*
import slreportgen.report.*
import slreportgen.finder.*

ch = Chapter("Title", "Design Data");

finder = ModelVariableFinder(hModel);

results = find(finder);
n = numel(results);

if n > 0
 s = Section("Title", "Design Data Summary");

 vars = cell(n, 4);

2 Generate System Design Description Reports

2-14

 for i = 1:n
 result = results(i);
 % Get link target for variable reporter
 lt = getVariableID(result);
 value = getVariableValue(results(i));
 vars{i, 1} = InternalLink(lt, results(i).Name);
 vars{i, 2} = class(value);
 vars{i, 3} = results(i).Source;
 vars{i, 4} = results(i).SourceType;
 end

 t = FormalTable(["Name", "Type", "Source", "Source Type"], vars);
 % Set styles for table header
 t.Header.TableEntriesStyle = {Bold, BackgroundColor("lightgrey")};
 % Set styles for entire table
 t.Width = "100%";
 t.Border = "solid";
 t.RowSep = "solid";
 t.ColSep = "solid";

 add(s, t);
 add(ch, s);

 s = Section("Title", "Design Data Details");
 % Separate multiple variable details be a horizontal rule
 if n > 1
 for result = results(1:end-1)
 add(s, result);
 add(s, HorizontalRule);
 end
 end
 add(s, results(end));
 add(ch, s);

 add(rpt, ch);
end

end

function makeModelConfigurationChapter(rpt, hModel)
% Create a chapter reporting on the active configuration set of the
% reported model.

import mlreportgen.report.*
import slreportgen.report.*

ch = Chapter("Title", "System Model Configuration");

modelConfig = ModelConfiguration(hModel);

% Add the reporter to the chapter and chapter to the report
add(ch,modelConfig);
add(rpt,ch);
end

function section = makeBlockSections(parent, system)
% Create subsections containing the properties of each block in the
% system and add it to the parent chapter or subsection.

 Generate a System Design Report with the Report API

2-15

import mlreportgen.report.*
import slreportgen.finder.*

blocksSection = Section("Title", "Blocks");
finder = BlockFinder(system);
elems = find(finder);
for elem = elems
 section = Section("Title", strrep(elem.Name, newline, ' '));
 add(section, elem);

 % If this block creates a bus or selects signals from a bus, report the
 % bus signal details
 busRptr = slreportgen.report.Bus(elem);
 add(section, busRptr);

 add(blocksSection, section);
end
add(parent, blocksSection);
end

function makeExecutionOrderSection(parent, system)
% Create a section to display a list of blocks in the system in order of
% execution. If the system is a top-level model, display information about
% all tasks in the model.
import mlreportgen.report.*
import slreportgen.report.*
section = Section('Title', 'Block Execution Order');

eo = ExecutionOrder(system);
if ~slreportgen.utils.isModel(system)
 % Only show task details for top-level models
 eo.ShowTaskDetails = false;
end

add(section, eo)
add(parent, section);
end

See Also
slreportgen.report.SystemHierarchy | slreportgen.report.Diagram |
slreportgen.report.SystemIO | slreportgen.finder.SystemDiagramFinder |
slreportgen.finder.DiagramResult | slreportgen.finder.DiagramElementResult |
slreportgen.finder.StateflowDiagramElementFinder |
slreportgen.finder.ModelVariableFinder | slreportgen.finder.ModelVariableResult
| slreportgen.report.ModelVariable | slreportgen.finder.BlockFinder |
slreportgen.finder.BlockResult | slreportgen.finder.ChartDiagramFinder |
slreportgen.report.SimulinkObjectProperties

More About
• “Report Generation for Simulink and Stateflow Elements” on page 1-9

2 Generate System Design Description Reports

2-16

System Design Description

3

System Design Description Dialog Box
In this section...
“System Design Description Overview” on page 3-2
“Title” on page 3-2
“Subtitle” on page 3-3
“Authors” on page 3-3
“Image” on page 3-4
“Legal Notice” on page 3-4
“Design details” on page 3-4
“Model references” on page 3-5
“Subsystems from custom libraries” on page 3-5
“Requirements traceability” on page 3-6
“Glossary and report explanation” on page 3-6
“File format” on page 3-6
“Stylesheet or Template” on page 3-7
“File name” on page 3-9
“Folder” on page 3-10
“If report exists, increment name to prevent overwriting” on page 3-10
“Package type” on page 3-10

System Design Description Overview
Choose options for the content, format, and location of the generated System Design Description
report. To customize the report template, click the Customize button to open the report in the
Report Explorer.

To get help on an option

1 Right-click the option's text label.
2 Select What's This from the popup menu.

See Also

“Generate Standard Reports”

Title
Provide the title text. For PDF, Word, and RTF format reports, the title is on the title page. For HTML
format reports, the title is at the top of the report.

3 System Design Description

3-2

Settings

Default: <Model name>

• Title can include letters, numbers, and special characters.
• Length is unlimited.

See Also

“Generate Standard Reports”

Subtitle
Provide the subtitle text. For PDF, Word, and RTF format reports, the subtitle is under the title on the
title page. For HTML format reports, the subtitle is under the title at the top of the report.

Settings

Default: System Design Description

• If you do not want a subtitle, delete the default setting and leave the field blank.
• Subtitle can include letters, numbers, and special characters.
• Length is unlimited.

Tip

If you generate both summary and detailed versions of the report, consider reflecting the type of
report in the subtitle.

See Also

“Generate Standard Reports”

Authors
List the names of the creators of the system for which you are generating the design description. List
of authors is under the subtitle.

Settings

Default: Value of the ModifiedBy parameter for the model. The ModifiedBy parameter indicates
the last person who updated the model.

Tip

To find the creator of the system, in the Simulink Toolstrip, on the Modeling tab, in the Setup
section, click Model Settings and then select Model Properties. Click the History tab.

See Also

“Generate Standard Reports”

 System Design Description Dialog Box

3-3

Image
Include an image on the title page (for PDF, Word, and RTF format reports) or near the top of the
report (for the HTML format).

Settings

No Default

• Specify the full path to the image file that you want to include in the report or click the Select
Image button to browse to the image file.

• Supported image file formats include:

• GIF
• JPEG
• BMP
• PNG
• TIF

Tip

An example of an image you might want to use is a logo or other graphic for a company, division, or
project involved in the system design.

See Also

“Generate Standard Reports”

Legal Notice
Provide legal notification text. For PDF, Word, and RTF format reports, the legal notice appears at the
bottom of the title page (second page). For HTML format reports, the legal notice appears near the
top of the report.

Settings

Default: For Internal Distribution Only

• Length is unlimited.
• The Legal Notice field does not support text formatting (such as bold or italics).

See Also

“Generate Standard Reports”

Design details
To generate a detailed system design description report, use the default (enabled). To generate a
summary description, disable this option.

3 System Design Description

3-4

Settings

Default: Enabled (generate a detailed report)

• The summary report provides system design information about the root system and block
diagrams for the subsystems in the model.

• The information about the root system includes:

• Block diagram
• Interface: name, data type, and other properties of the system input and output signals
• Look-up tables
• State charts
• Requirements (optional)

• The detailed version of the report includes all the information that is in the summary form of the
report. The detailed version includes the following information, in addition to the summary
information. Atomic subsystem information is more detailed than virtual subsystem information.

• Block parameters
• Block execution order for root system and atomic subsystems
• (For atomic subsystems) Checksum that indicates whether the version of an atomic subsystem

used to generate the report differs from other versions of the subsystem

See Also

“Generate Standard Reports”

Model references
To include model references, use the default (enabled). To exclude model references, disable this
option.

Settings

Default: Enabled

See Also

• “Generate Standard Reports”
• “Model References”

Subsystems from custom libraries
Include library links to subsystems defined in custom (user-created) libraries.

Settings

Default: Enabled

 System Design Description Dialog Box

3-5

See Also

• “Generate Standard Reports”

Requirements traceability
Include links from blocks to the requirements that the blocks meet.

Settings

Default: Enabled

• To capture requirements links in the report, the model must include requirements links. Use
Simulink Requirements to establish requirements links.

• If you use the default (enabled) and there are no requirements links in the model, the generated
report omits the Requirements section.

See Also

• “Generate Standard Reports”

Glossary and report explanation
Include a glossary of terms in the report and a description of the report contents. The glossary
includes definitions of Simulink terms such as “atomic subsystem,” “block diagram,” “signal.” The
glossary helps readers who are unfamiliar with Simulink to understand the system design description.
The glossary and report explanation sections appear at the end of the report and are three pages long
(in PDF).

Settings

Default: Enabled

Tip

The report explanation (“About this Report”) describes the information in each report section.

See Also

“Generate Standard Reports”

File format
Specify the output format for the report. Generating a report formatted by a template is generally
faster than generating a report formatted by a Report Explorer stylesheet.

Settings

Direct PDF (from template)
Generate a PDF report from a template.

PDF (from Word template)
Generate a PDF report using a Word template.

3 System Design Description

3-6

HTML (from template)
Generate an HTML report from a template. You can choose a Package type option.

Single-File HTML (from template)
Generate an HTML report from a template as a single file.

Word (from template)
Generate a Word report using a template.

Acrobat (PDF)
Generate a PDF report using an XSL stylesheet.

Web (HTML)
Generate an HTML report using an XSL stylesheet.

Word Document
Generate a Rich Text Format (RTF) document using a DSSSL stylesheet and convert the RTF
document to a Word .doc file. Available only on Microsoft Windows®.

Rich Text Format
Generate a Rich Text Format (RTF) document using a DSSSL stylesheet.

See Also

“Generate Standard Reports”

Stylesheet or Template
Specify the stylesheet or template to use for the report.

Settings

The settings depend on the File format option you choose.

When you use a from template option, you can use:

• The default template for the output type
• The Default Numbered template, which numbers sections in chapters with numbers like 1.1,

1.2, and 1.1.1
• A customized template provided at your site

When you use one of the other output options, you can choose from several standard style sheets or
any customized versions provided at your site.

For the Acrobat(PDF) file format, these are the stylesheet options:

Default: Default print stylesheet

Default print stylesheet
Displays title page, table of contents, list of titles

Standard Print
Displays title page, table of contents, list of titles

 System Design Description Dialog Box

3-7

Simple Print
Suppresses title page, table of contents, list of titles

Compact Simple Print
Minimizes page count, suppresses title, table of contents, list of titles

Large Type Print
Uses 12-point font (slightly larger than Standard Print)

Very Large Type Print
Uses 24-point font and landscape paper orientation

Compact Print
Minimizes white space to reduce page count

Unnumbered Chapters & Sections
Chapters and sections are not numbered

Numbered Chapters & Sections
Chapters and sections are both numbered

Paginated Sections
Sections are printed with page breaks

Custom Header
Lets you specify custom headers and footers

Custom Titlepage
Lets you specify custom title page content and presentation

Verbose Print
Lets you specify advanced print options

For the Web (HTML) file format, these are the stylesheet options:

Default for Web (HTML): Default HTML stylesheet

Default HTML stylesheet
HTML on a single page

Simulink book HTML stylesheet
HTML on multiple pages; suppresses chapter headings and table of contents

Truth Table HTML stylesheet
HTML on multiple pages; suppresses chapter headings and table of contents

Multi-page Web
HTML, with each chapter on a separate page

Single-page Web
HTML on a single page

Single-page Unnumbered Chapters & Sections
HTML on a single page; chapters and sections are not numbered

Single-page Numbered Chapters & Sections
HTML on a single page; chapters and sections are numbered

3 System Design Description

3-8

Single-page Simple
HTML on a single page; suppresses title page and table of contents

Multi-page Simple
HTML on multiple pages; suppresses title page and table of contents

Multi-page Unnumbered Chapters & Sections
HTML on multiple pages; chapters and sections are not numbered

Multi-page Numbered Chapters & Sections
HTML on multiple pages; chapters and sections are not numbered

For the Rich Text Format and Word file formats, these are the stylesheet options:

Default for Rich Text Format and Word file formats: Standard Print

Standard Print
Displays title page, table of contents, list of titles

Simple Print
Suppresses title page, table of contents, list of titles

Compact Simple Print
Minimizes page count, suppresses title, table of contents, list of titles

Large Type Print
Uses 12-point font (slightly larger than Standard Print)

Very Large Type Print
Uses 24-point font and landscape paper orientation

Compact Print
Minimizes white space to reduce page count

Unnumbered Chapters & Sections
Chapters and sections are not numbered

Numbered Chapters & Sections
Chapters and sections are both numbered

See Also

“Generate Standard Reports”

File name
Provide a name for the generated report file.

Settings

Default: <Name of model>

Do not include the file format extension. (For example, enter MyReport, but not MyReport.pdf.

 System Design Description Dialog Box

3-9

Tip

If you generate both summary and detailed versions of the report, consider reflecting the type of
report in the file name.

See Also

“Generate Standard Reports”

Folder
Provide a path to the folder in which to store the generated report file.

Settings

No Default

• Use a full path name
• Click the Select Folder button to browse to the folder where you want to store the generated

report.

See Also

“Generate Standard Reports”

If report exists, increment name to prevent overwriting
Increment the file name to preserve an existing report.

Settings

Default: Enabled (increments the file name to prevent overwriting of an existing report file)

Tips

If you generate both summary and detailed versions of the report, consider reflecting the type of
report in the file name.

See Also

“Generate Standard Reports”

Package type
Packaging to use for reports generated using an HTML template

Settings

Default: Zipped

Zipped
Package report files in a single compressed file that has the report name, with a .zip extension.

3 System Design Description

3-10

Unzipped
Generate the report files in a subfolder of the current folder. The subfolder has the report name.

Both zipped and unzipped
Package the report files as both zipped and unzipped.

Dependency

To use the Packaging type options, set File format to HTML (from template), choose a
packaging options for the output files.

See Also

“Generate Standard Reports”

 System Design Description Dialog Box

3-11

Creating Simulink Reports

• “Create a Simulink Report Generator Report” on page 4-2
• “Report on MATLAB Function” on page 4-13
• “Use Simulink Report Explorer Components in a Report API Report” on page 4-20
• “Report Systems Hierarchically” on page 4-25
• “Customize Simulink Diagram Hyperlinks in HTML and PDF Reports” on page 4-27
• “Tile Simulink Diagrams” on page 4-29
• “Create a Simulink Bus Object Report” on page 4-32
• “Report System Inputs and Outputs” on page 4-34
• “Reporting on DocBlock Blocks” on page 4-37
• “Report Model Notes” on page 4-39
• “Report Execution Order of Tasks and Blocks in a Simulink System” on page 4-41
• “Create a Simulink Report Generator Report Interactively” on page 4-50
• “Generate a Report Associated with a Model” on page 4-86
• “Logical and Looping Components” on page 4-87
• “Filter with Loop Context Functions” on page 4-88
• “Loop Context Functions” on page 4-90

4

Create a Simulink Report Generator Report
The Simulink Report Generator Report API comprises a set of objects designed to find and format
model and simulation data. You can use these objects with MATLAB Report API and DOM API objects
to create MATLAB programs that generate reports on Simulink models and simulations. The following
example illustrates using the Simulink Report API and the MATLAB Report API to create a MATLAB
program. This program generates a report on the contents of a Simulink model. The report contains
these sections:

• Title Page
• Table of Contents
• Root System Chapter — Contains the root block diagram and properties of each block in the root

diagram
• Subsystems Chapter -- Contains the diagram and block properties of each subsystem of the model
• Stateflow Charts Chapter -- Contains charts and chart object properties of each chart in the model

1 Import the API functions.

To eliminate the need to use fully qualified names of Report, Finder, and DOM API functions, use
these statements. For example, instead of using slreportgen.finder.BlockFinder, you can
use BlockFinder.

import slreportgen.report.*
import slreportgen.finder.*
import mlreportgen.report.*

2 Load the slrgex_sf_car model.

model = load_system('slrgex_sf_car');
3 Create a report object.

Use a Simulink report constructor (slreportgen.report.Report) to create a report object to
hold the contents of the report. You must fully qualify the name of the constructor to distinguish
it from the MATLAB report constructor (mlreportgen.report.Report). Set the name of the
report to sdd_ followed by the value of the Name property of the model.

rpt = slreportgen.report.Report(['sdd_'...
 get_param('slrgex_sf_car','Name')],'pdf');

To customize properties that apply to the whole report, see slreportgen.report.Report.
4 Add a title page.

Use a title page reporter constructor (mlreportgen.report.TitlePage) to create a title page
reporter. This reporter generates a title page based on its properties. Set the Title, Subtitle,
and Author properties to character arrays that specify the report title, subtitle, and author,
respectively.

Use a diagram reporter constructor (slreportgen.report.Diagram) to create a diagram
reporter for this model. This reporter generates an image of the block diagram of the model. To
include this image on the report title page, assign the diagram reporter to the Image property of
the title page reporter. Then, add the title page to the report.

tp = TitlePage;
tp.Title = upper(get_param(model,'Name'));

4 Creating Simulink Reports

4-2

tp.Subtitle = 'System Design Description';
tp.Author = 'MathWorks';
tp.Image = Diagram(model);
append(rpt,tp);

To customize additional title page properties, see mlreportgen.report.TitlePage.
5 Add a table of contents.

Use a table of contents (TOC) reporter constructor to create a TOC reporter. This reporter
generates a TOC for the report. Add the TOC reporter to the report.

toc = TableOfContents;
append(rpt,toc);

 Create a Simulink Report Generator Report

4-3

To customize the table of contents, see mlreportgen.report.TableOfContents.
6 Add a chapter for the root system.

Use a chapter constructor (mlreportgen.report.Chapter) to create a chapter reporter. This
reporter generates a chapter based on its Title and Content properties. The reporter
automatically numbers the chapter title. The chapter reporter also generates the chapter page
headers and footers and its page numbers.

Add a model diagram reporter to the chapter. This reporter returns an image of the block
diagram of the model that you add to the chapter.

ch = Chapter("Title","RootSystem");
append(ch,Diagram(model));

4 Creating Simulink Reports

4-4

For information on customizing chapters, see mlreportgen.report.Chapter.
7 Add chapter sections for each root system block.

Use the block finder constructor (slreportgen.report.BlockFinder) to create a block
finder for the root diagram. Then, use the find function of the block finder. The find function
returns an array of block result objects (slreportgen.report.BlockResult), each of which
contains a block.

Loop through the block result objects. For each result, construct a section reporter
(mlreportgen.report.Section). This reporter generates a numbered report section based on
its Title and Content properties. Set the section Title property to the name of the block on
which it reports.

Add the current block result to the section reporter. Adding the result sets the section reporter
Content property to a simulink.report.SimulinkObjectProperties reporter. This
SimulinkObjectProperties reporter generates a table of the properties of the current block,
which is then added to the section. Add each subsection to the parent chapter. Then add the
chapter to the report.

blkFinder = BlockFinder(model);
blocks = find(blkFinder);
for block = blocks
 section = Section("Title", ...
 strrep(block.Name, newline,' '));
 append(section,block);
 append(ch,section);
end
append(rpt,ch);

 Create a Simulink Report Generator Report

4-5

For information finding blocks and how to customize sections, see
slreportgen.finder.BlockFinder and mlreportgen.report.Section, respectively.

8 Add a chapter for subsystems.

Create a chapter for the subsystems of the model and the blocks in each subsystem.

ch = Chapter("Title","Subsystems");
9 Find subsystem diagrams in the model.

Find all subsystem diagrams in the model. The finder returns an array of DiagramResult
objects, each of which contains a Diagram reporter that creates a snapshot of the subsystem
diagram.

sysdiagFinder = SystemDiagramFinder(model);
sysdiagFinder.IncludeRoot = false;

4 Creating Simulink Reports

4-6

For more information, see slreportgen.finder.SystemDiagramFinder and
slreportgen.finder.DiagramResult

10 Add results to chapter sections.

Using loops, create a chapter section for each subsystem. Find the blocks and block elements in
each subsystem. Add a table of block elements to each chapter section and add each section to
the chapter. Then, add the chapter to the report.

while hasNext(sysdiagFinder)
 system = next(sysdiagFinder);
 section1 = Section("Title",system.Name);
 append(section1,system);

 blkFinder1 = BlockFinder(system);
 elems = find(blkFinder1);
 for elem = elems
 section2 = Section("Title",...
 strrep(elem.Name,newline,' '));
 append(section2,elem);
 append(section1,section2);
 end
 append(ch,section1);
end
append(rpt,ch);

 Create a Simulink Report Generator Report

4-7

Note Simulink finders can operate in either array or iterator mode. In array mode, use the finder
find function to return the search results as an array of results. In iterator mode, use the finder
hasNext and next functions to return the search results one-by-one. Use iterator mode when
searching for diagrams in models that have many model references. Iterator mode closes a model
after compiling and searching it, whereas find mode keeps all the models that it searches open.
Having many open models can potentially consume all system memory and slow report
generation. Although the model used in this example does not contain model references, the
example uses iterator mode to illustrate its syntax.

11 Add a chapter for Stateflow charts and objects.

Find all Stateflow charts in the model. Create a chapter. Using loops, add subsections for each
chart. Find all the elements in each chart and add them to the subsections. Then, add the section
to the chapter and the chapter to the report.

ch = Chapter("Title", "Stateflow Charts");

chdiagFinder = ChartDiagramFinder(model);
while hasNext(chdiagFinder)
 chart = next(chdiagFinder);
 section = Section("Title",chart.Name);
 append(section,chart);

 objFinder = StateflowDiagramElementFinder(chart);

4 Creating Simulink Reports

4-8

 sfObjects = find(objFinder);
 for sfObj = sfObjects
 title = sfObj.Name;
 if isempty(title)
 title = sfObj.Type;
 end
 objSection = Section("Title",title);
 append(objSection,sfObj);
 append(section,objSection);
 end
 append(ch,section);
end
append(rpt,ch);

For information on chart and diagram element finders, see
slreportgen.finder.ChartDiagramFinder and
slreportgen.finder.StateflowDiagramElementFinder.

 Create a Simulink Report Generator Report

4-9

12 Close the report, run the report, and close the model.

close(rpt);
rptview(rpt);
close_system(model);

The complete code is:

import slreportgen.report.*
import slreportgen.finder.*
import mlreportgen.report.*

4 Creating Simulink Reports

4-10

model = load_system('slrgex_sf_car');
rpt = slreportgen.report.Report(['sdd_'...
 get_param('slrgex_sf_car','Name')],'pdf');

tp = TitlePage;
tp.Title = upper(get_param(model,'Name'));
tp.Subtitle = 'System Design Description';
tp.Author = 'MathWorks';
tp.Image = Diagram(model);
append(rpt,tp);
toc = TableOfContents;
append(rpt,toc);

ch = Chapter("Title","RootSystem");
append(ch,Diagram(model));
blkFinder = BlockFinder(model);
blocks = find(blkFinder);
for block = blocks
 section = Section("Title", ...
 strrep(block.Name, newline, ' '));
 append(section,block);
 append(ch,section);
end
append(rpt,ch);

ch = Chapter("Title","Subsystems");
sysdiagFinder = SystemDiagramFinder(model);
sysdiagFinder.IncludeRoot = false;

while hasNext(sysdiagFinder)
 system = next(sysdiagFinder);
 section1 = Section("Title",system.Name);
 append(section1,system);

 blkFinder1 = BlockFinder(system);
 elems = find(blkFinder1);
 for elem = elems
 section2 = Section("Title",...
 strrep(elem.Name, newline, ' '));
 append(section2,elem);
 append(section1,section2);
 end
 append(ch,section1);
end
append(rpt,ch);

ch = Chapter("Title", "Stateflow Charts");
chdiagFinder = ChartDiagramFinder(model);
while hasNext(chdiagFinder)
 chart = next(chdiagFinder);
 section = Section("Title",chart.Name);
 append(section,chart);

 objFinder = StateflowDiagramElementFinder(chart);
 sfObjects = find(objFinder);
 for sfObj = sfObjects
 title = sfObj.Name;
 if isempty(title)

 Create a Simulink Report Generator Report

4-11

 title = sfObj.Type;
 end
 objSection = Section("Title",title);
 append(objSection,sfObj);
 append(section,objSection);
 end
 append(ch,section);
end
append(rpt,ch);

close(rpt);
rptview(rpt);
close_system(model);

See Also
rptview

4 Creating Simulink Reports

4-12

Report on MATLAB Function
The Report API provides multiple ways to report on Simulink MATLAB Function blocks and Stateflow
MATLAB functions. To report detailed information, use the
slreportgen.report.MATLABFunction reporter. This reporter reports properties, arguments,
function code, function symbols, and supporting functions.

Other ways to report on MATLAB Function blocks or Stateflow MATLAB functions are by using the
SimulinkObjectProperties or StateflowObjectProperties reporter, respectively. These
reporters, however, do not provide function code formatting or report function symbols, supporting
functions, or arguments. Use these reporters if you want only property information.

The Report API provides finders for finding blocks and Stateflow elements, including MATLAB
Functions, throughout a model or chart. These finders are the BlockFinder,
DiagramElementFinder, and StateflowDiagramElementFinder.

These examples show how to use a finder in your report generator program. For cases where you
know the handle or path to a MATLAB Function, you do not need to use a finder (see
slreportgen.report.MATLABFunction for examples).

Find and Report on MATLAB Function Blocks
Use Report API finders and the slreportgen.report.MATLABFunction reporter to report on
MATLAB Function blocks.

Use the BlockFinder to find all blocks of type SubSystem, which includes MATLAB Function blocks.
If you search for all block types, the BlockFinder can take more time to return results than if you limit
the search to SubSystem block types.

blkfinder = slreportgen.finder.BlockFinder(model_name);
blkfinder.BlockTypes = "SubSystem";
blks = find(blkfinder);

Then, loop through the returned SubSystem blocks to test whether the block is a MATLAB Function
block. Create a MATLABFunction reporter for each MATLAB Function block, set desired properties,
and add each result to a report.

for i=1:length(blks)
 block = blks(i).Object;
 if slreportgen.utils.isMATLABFunction(block)
 rptr = MATLABFunction(block);
 rptr.IncludeArgumentProperties = true;
 add(rpt,rptr);
 end
end

This code is an example of a report generator program that finds and reports MATLAB Function
blocks.

import slreportgen.report.*
import slreportgen.finder.*

model_name = 'sldemo_eml_galaxy';
load_system(model_name);
rpt = slreportgen.report.Report;

 Report on MATLAB Function

4-13

blkfinder = BlockFinder(model_name);
blkfinder.BlockTypes = "SubSystem";
blks = find(blkfinder);

for i=1:length(blks)
 block = blks(i).Object;
 if slreportgen.utils.isMATLABFunction(block)
 rptr = MATLABFunction(block);
 rptr.IncludeArgumentProperties = true;
 add(rpt,rptr);
 end
end

close(rpt);
close_system(model_name);
rptview(rpt);

This image shows a section of the report output for one of the MATLAB Function blocks. It shows the
block properties table, the summary table for one of the arguments, and a portion of the function
script. In the actual output, all of the argument tables appear before the function script.

4 Creating Simulink Reports

4-14

 Report on MATLAB Function

4-15

Find and Report on Stateflow MATLAB Functions
Use the StateflowDiagramElementFinder and the slreportgen.report.MATLABFunction
reporter to find and report on Stateflow MATLAB functions.

elemfinder = StateflowDiagramElementFinder(chart_name);
elemfinder.Types = "emfunction";
elems = find(elemfinder);

Then, loop through the returned MATLAB functions. Create a MATLABFunction reporter for each
MATLAB function and add it to a report.

for i = 1:length(elems)
 rptr = MATLABFunction(elems(i).Object);
 add(rpt,rptr);
end

This code is an example of a report generator program that finds and reports MATLAB functions in
Stateflow charts.

import slreportgen.report.*
import slreportgen.finder.*

model_name = 'sf_server';
openExample(model_name);
chart_name = 'sf_server/transmitter';
rpt = slreportgen.report.Report;

elemfinder = StateflowDiagramElementFinder(chart_name);
elemfinder.Types = "emfunction";
elems = find(elemfinder);

for i = 1:length(elems)
 rptr = MATLABFunction(elems(i).Object);
 add(rpt,rptr);
end

close(rpt);
close_system(model_name);
rptview(rpt);

This image shows a section of the report output for one of the MATLAB Function blocks. It shows the
object properties table and a portion of the function script.

4 Creating Simulink Reports

4-16

Customize MATLAB Function Reporter Output
You can customize the output of a MATLAB Function reporter in the same way that you customize any
report or reporter:

• Use DOM classes — Specify formats using DOM classes, such as mlreportgen.dom.Paragraph,
and use them in your program. For example, this code sets the appearance of the function script.

rptr = slreportgen.report.MATLABFunction;
paraScript = mlreportgen.dom.Paragraph;
paraScript.FontFamilyName = 'Arial';
paraScript.FontSize = '12pt';
paraScript.Color = 'blue';
rptr.FunctionScript = paraScript;

 Report on MATLAB Function

4-17

• Edit a copy of the default template — The advantage of saving customizations in a new template is
that you can easily reuse those customizations by using that template for another report generator
program The template and style sheets for the MATLABFunction reporter are located in the
matlab\toolbox\shared\slreportgen\rpt\rpt\+slreportgen\+report
\@MATLABFunction\resources\templates folder.

This example shows the steps for copying and editing a MATLABFunction reporter html template.

1 Create a copy of the default html template. In this example, the template package is saved as
myHTMLTemplate.htmtx in the current working folder.

mfunction = slreportgen.report.MATLABFunction;
mfunction.createTemplate('myHTMLTemplate','html');

2 Unzip the template package. The unzipped template package is a folder of document, style
sheet, and image files. In this example, the template package folder is saved to the current
working folder.

unzipTemplate('myHTMLTemplate.htmtx');
3 From the stylesheets folder, open the root.css file in a text editor. The root.css file

contains the default styles for the MATLABFunction reporter. The beginning of the file and
the first style are:

/**

* MATLABFunction Reporter

**/

/* Default style for the MATLAB function script title */

.MATLABFunctionFunctionScriptTitle {

font-family: 'Noto Sans', 'Noto Sans CJK JP', 'Noto Sans CJK SC', 'Noto Sans CJK KR';

font-weight: bold;

margin-top: 10pt;

color: black;

white-space: pre;

}
4 Edit the styles as desired. In this example, the top margin above the function script title is

increased to 20 points and the color of the title to blue.

/**

MATLABFunction Reporter

**/

/* Default style for the MATLAB function script title */

.MATLABFunctionFunctionScriptTitle {

4 Creating Simulink Reports

4-18

font-family: 'Noto Sans', 'Noto Sans CJK JP', 'Noto Sans CJK SC', 'Noto Sans CJK KR';

font-weight: bold;

margin-top: 12pt;

color: blue;

white-space: pre;

}
5 Save the file.
6 Zip the template folder into a template package. For this example, the template package is

myHTMLTemplate.htmtx.

zipTemplate('myHTMLTemplate');
7 In your report generator program, to use the saved template, specify the template source.

mfunction.TemplateSrc = 'myHTMLTemplate';

See “Templates for DOM API Report Programs” for additional information.

See Also
slreportgen.report.MATLABFunction | MATLAB Function |
slreportgen.finder.BlockFinder | slreportgen.finder.DiagramElementFinder |
slreportgen.finder.StateflowDiagramElementFinder | zipTemplate | unzipTemplate

 Report on MATLAB Function

4-19

Use Simulink Report Explorer Components in a Report API
Report

The RptFile reporter lets you use Simulink Report Explorer components in a Report API-based
report program. This reporter is useful if your report program needs to generate content for which a
Report Explorer component exists but for which no Report API reporter is available. For example, the
Report Explorer includes a component named Block Type Count that generates the number of each
type of block that a model contains. No equivalent Report API reporter exists.

This example shows how to use the RptFile reporter to include a count of the types of blocks used
in the f14 Simulink model. This information is obtained from the Report Explorer Block Type Count
component and is presented in tables in the generated Report API report.

Create the Report Explorer Setup File
Create a Report Explorer setup file that includes a Block Type Count component. For information
about creating a report setup file, see “Report Setup”.

1 Type report to open the Report Explorer.
2 In the panel on the right, click Create and edit a Report file. Save the file as

mysetupfile.rpt.
3 From the Simulink folder in the middle panel, add a Model Loop component to your report. Set

the Model name to Current block diagram.
4 From the Simulink folder in the middle panel, add a System Loop component as a child of the

Model Loop. Set these options:

• Loop on Systems — Select systems automatically
• Include subsystems in Simulink functions — selected
• Sort Systems — By system depth

5 From the Simulink folder in the middle panel, add a Block Type Count component as a child of
the System Loop. Set these options:

• Table title — Block Type Count
• Show block names in title — selected
• Sort table — Alphabetically by block type

6 Save the file.

The mysetupfile.rpt hierarchy is

4 Creating Simulink Reports

4-20

Create a Report Generator Program
These steps describe how to create a Report Generator program that includes a RptFile reporter for
the mysetupfile.rpt Report Explorer setup file.

Note The full program is listed after the steps.

1 To eliminate the need to use fully-qualified names of the report, finder, and utility functions,
import the API functions. For example, instead of using mlreportgen.report.TitlePage, you
can use TitlePage.

import slreportgen.report.*
import slreportgen.finder.*
import mlreportgen.report.*
import mlreportgen.utils.*

2 Load the f14 model.

model = "f14";
load_system(model);

3 Create a report object to hold the contents of the report. Use a Simulink report constructor
(slreportgen.report.Report) to create a report object You must fully qualify the name of the
constructor to distinguish it from the MATLAB report constructor
(mlreportgen.report.Report). Specify the name of the report as "My Report" and the
output type as PDF.

rpt = slreportgen.report.Report("MyReport","pdf");
4 Add a title page and table of contents to the report.

titlepg = TitlePage();
titlepg.Title = "f14 Model Block Types ";
titlepg.Author = "MathWorks";
add(rpt,titlepg);

toc = TableOfContents;
add(rpt,toc);

 Use Simulink Report Explorer Components in a Report API Report

4-21

5 Find all systems in the model.

sysdiag_finder = SystemDiagramFinder(model);
found_diags = find(sysdiag_finder);

6 Use a for loop to create a separate chapter for each system and include a system snapshot with a
single-line caption.

Create a RptFile reporter based on mysetupfile.rpt. The reporter generates a table of block
type counts for the current system. Add the RptFile reporter to the chapter and add the
chapter to the report.

for sysdiag = found_diags
 chap = Chapter(sysdiag.Path);

 snapshot = Diagram(sysdiag.Path);
 oneline = makeSingleLineText(sysdiag.Name);
 snapshot.Snapshot.Caption = strcat...
 ("System Diagram: ",oneline);
 add(chap,snapshot);

 rptFile = RptFile("mysetupfile.rpt");
 rptFile.Model = model;
 rptFile.System = sysdiag.Path;

 add(chap,rptFile);
 add(rpt,chap);
end

The first time this loop runs during report generation, a snapshot and block count of the top-level
system of the model is added to the report.

4 Creating Simulink Reports

4-22

7 Close and view the report.

close(rpt);
rptview(rpt);

The full program is

import slreportgen.report.*
import slreportgen.finder.*
import mlreportgen.report.*
import mlreportgen.utils.*

 Use Simulink Report Explorer Components in a Report API Report

4-23

model = "f14";
load_system(model);

rpt = slreportgen.report.Report("MyReport","pdf");

titlepg = TitlePage();
titlepg.Title = "f14 Model Block Types ";
titlepg.Author = "MathWorks";
add(rpt,titlepg);

toc = TableOfContents;
add(rpt,toc);

sysdiag_finder = SystemDiagramFinder(model);
found_diags = find(sysdiag_finder);
for sysdiag = found_diags
 chap = Chapter(sysdiag.Path);

 snapshot = Diagram(sysdiag.Path);
 oneline = makeSingleLineText(sysdiag.Name);
 snapshot.Snapshot.Caption = strcat...
 ("System Diagram: ",oneline);
 add(chap,snapshot);

 rptFile = RptFile("mysetupfile.rpt");
 rptFile.Model = model;
 rptFile.System = sysdiag.Path;
 add(chap,rptFile);

 add(rpt,chap);
end

close(rpt);
rptview(rpt);

4 Creating Simulink Reports

4-24

Report Systems Hierarchically
This example shows how to create a report with sections that are numbered according to system
hierarchy. Each section contains a system snapshot and subsections that contain subsystem
snapshots. To create such a section, create a section object, add a diagram snapshot, and then add
subsystem sections. To create the subsystem sections, again create a section, add a subsystem
diagram snapshot and then add its subsystem sections. The algorithm to create the sections is
recursive. This example creates and uses a local function called createSystemSection, which
implements the recursive algorithm.

Create Hierarchical Report Using createSystemSection Function

Open a model.

model = "slrgex_sf_car";
open_system(model);

Create and open a report object.

% Change the output type from "pdf" to "docx" or "html" to create a
% Word or HTML report, respectively.
rpt = slreportgen.report.Report("myreport", "pdf");
open(rpt);

Add a title page.

titlepage = mlreportgen.report.TitlePage();
titlepage.Title = "Hierarchical Report";
add(rpt, titlepage);

Add a table of contents with the number of levels set to 6, which is the maximum.

toc = mlreportgen.report.TableOfContents();
toc.TOCObj.NumberOfLevels = 6;
add(rpt, toc);

Create system sections for the model by calling the createSystemSection local function (see below).
This function recursively calls itself to create sections for the subsystems.

section = createSystemSection(model);
add(rpt, section);

Generate and display the report.

close(rpt);
rptview(rpt);

Define createSystemSection Local Function

A system section is composed of a system snapshot and its subsystems in subsections. To create a
system section, find all systems one level deep by using an slreportgen.finder.DiagramFinder with a
SearchDepth of 1.

function section = createSystemSection(sys)
 df = slreportgen.finder.DiagramFinder(sys);
 df.SearchDepth = 1;

 Report Systems Hierarchically

4-25

 % Use the finder in iterator mode. The next function returns search results
 % one-by-one and the hasNext function determines when there are no more
 % search results. To obtain the current system, call the next function
 % once.
 sysResult = next(df);

 % Now, create a section using mlreportgen.report.Section with the system
 % name as the title.
 section = mlreportgen.report.Section(...
 "Title", mlreportgen.utils.normalizeString(sysResult.Name));

 % Add a system snapshot and a caption that shows the full diagram path.
 % To include additional information about the system, add it to the
 % section object.
 diag = slreportgen.report.Diagram(sysResult.Object);
 diag.Snapshot.appendCaption(sysResult.Path);
 add(section, diag);

 % To create subsections, loop through all subsystems and recursively call
 % createSystemSection. Before calling createSystemSection, add a page break
 % so each system starts on a new page. Note that adding a page break right
 % after the system snapshot would add a blank page at the end of the report.
 while hasNext(df)
 childSysResult = next(df);
 add(section, mlreportgen.dom.PageBreak());
 subSection = createSystemSection(childSysResult.Object);
 add(section, subSection);
 end
end

4 Creating Simulink Reports

4-26

Customize Simulink Diagram Hyperlinks in HTML and PDF
Reports

This example shows, for PDF and HTML reports, how to customize navigation hyperlinks of Simulink
diagrams embedded in reports. By default, clicking on a diagram element navigates to the section of
the report that documents that element. To specify a different destination for the hyperlinks, follow
the procedure in this example.

Set up the report and load a Simulink model

Import the DOM and Report API packages so you do not have to use long, fully-qualified class names.

import mlreportgen.dom.*
import slreportgen.report.*

Create and open a Simulink report.

rpt = Report("myreport","pdf");
open(rpt);

Load a Simulink model.

model = "slrgex_sf_car";
load_system(model);

Include the slrgex_sf_car root system diagram using the Diagram reporter

The Diagram reporter overlays each element of the slrgex_sf_car diagram snapshot with a
hyperlink to navigate to a section of the report that describes that element. The hyperlink and its ID
are created using the element's path in the model. For example, a subsystem block, such as Engine
or transmission, includes a hyperlink used for navigating to the corresponding subsystem diagram
snapshot in the report.

diag1 = Diagram(model);
diag1.Snapshot.Caption = strcat("Diagram snapshot for root system: ",model);
add(rpt,diag1);
add(rpt,PageBreak);

Include theslrgex_sf_car/Engine subsystem diagram using the Diagram reporter

This reporter prefaces the report object that it creates with a hyperlink target whose ID is also based
on the reported element's path in the model.The Diagram reporter (diag1) for root system
slrgex_sf_car also uses the same ID to create the hyperlink on the Engine block in the snapshot.
So, clicking on the Engine block automatically targets to this subsystem diagram snapshot in the
report.

engine = strcat(model,"/","Engine");

diag2 = Diagram(engine);
diag2.Snapshot.Caption = strcat("Diagram snapshot for subsystem: ",engine);
add(rpt,diag2);
add(rpt,PageBreak);

Include the slrgex_sf_car/transmission subsystem diagram using the Diagram reporter

Clicking on transmission block in the slrgex_sf_car root system diagram snapshot navigates to
the transmission subsystem diagram snapshot in the report.

 Customize Simulink Diagram Hyperlinks in HTML and PDF Reports

4-27

To customize the target for the hyperlink, remove the link target for this reporter by setting the
LinkTarget property of the reporter to an empty string. This ensures that clicking on the
transmission block in the slrgex_sf_car root system diagram snapshot does not navigate to the
transmission subsystem diagram. Then create a custom target for the hyperlink as described in
the next section.

transmission = strcat(model,"/","transmission");

diag3 = Diagram(transmission);
diag3.LinkTarget = "";
diag3.Snapshot.Caption = strcat("Diagram snapshot for subsystem: ",transmission);
add(rpt,diag3);
add(rpt,PageBreak);

Create custom target for the slrgex_sf_car/transmission block hyperlink

To set a new target for the hyperlink, first use the slreportgen.utils.getObjectID function to
obtain the same ID that the Diagram reporter uses. Use the SimulinkObjectProperties reporter
to generate a property table for the transmission block. Change the LinkTarget property of the
reporter to the ID obtained with slreportgen.utils.getObjectID. The Diagram reporter
(diag1) for root system slrgex_sf_car also uses the same ID to create the hyperlink on the
transmission block in the snapshot, so clicking on the block now targets this block property table.

id = slreportgen.utils.getObjectID(transmission);

props = SimulinkObjectProperties(transmission);
props.LinkTarget = id;
add(rpt,props);

Close and view the report

close(rpt);
rptview(rpt);

4 Creating Simulink Reports

4-28

Tile Simulink Diagrams
This example shows how to create a report with a large diagram that spans across multiple pages.

Create Report with Image Tiles

Open a model with a large diagram.

model = 'slreportgen_demo_big_diagram';
open_system(model);

Create large image file to split into tiles.

imgFile = [model '.png'];
print('-dpng', ['-s' model], imgFile);

Create and open a report.

% To create a Word report, change the output type from "pdf" to "docx".
% To create an HTML report, change "pdf" to "html" or "html-file for
% a multifile or single-file report, respectively.
rpt = slreportgen.report.Report('myreport2', 'pdf');
open(rpt);

Get the page layout information.

pageLayout = rpt.Document.CurrentPageLayout;
pageSize = pageLayout.PageSize;
pageMargins = pageLayout.PageMargins;

Set the page header and footer to 0 inches to maximize space.

pageMargins.Header = '0in';
pageMargins.Footer = '0in';

Determine the image tile size that fits onto the page. The optimal tile size is the page size minus the
page margins, gutters, headers and footers. Also, adjust the tile height to allow 0.5 inches for the
caption. Note that for PDF documents, MATLAB Report Generator defines one inch as equal to 96
pixels.

dpi = 96;
units = mlreportgen.utils.units;

tileHeight = units.toPixels(pageSize.Height, 'Resolution', dpi) ...
 - units.toPixels(pageMargins.Top, 'Resolution', dpi) ...
 - units.toPixels(pageMargins.Bottom, 'Resolution', dpi) ...

 Tile Simulink Diagrams

4-29

 - units.toPixels(pageMargins.Header, 'Resolution', dpi) ...
 - units.toPixels(pageMargins.Footer, 'Resolution', dpi) ...
 - units.toPixels('0.5in', 'Resolution', dpi);

tileWidth = units.toPixels(pageSize.Width, 'Resolution', dpi) ...
 - units.toPixels(pageMargins.Left, 'Resolution', dpi) ...
 - units.toPixels(pageMargins.Right, 'Resolution', dpi) ...
 - units.toPixels(pageMargins.Gutter, 'Resolution', dpi);

tileSize = [tileWidth tileHeight];

Call the sliceImage local function (see below) to slice the large image file into image tiles.

tiles = sliceImage(imgFile, [tileWidth tileHeight]);

Add the tile images to the report. Also, also add a caption to indicate where the tile image belongs in
relation to the overall image.

for i = 1:numel(tiles)
 tile = tiles{i};
 formalImage = mlreportgen.report.FormalImage(tile.File);
 formalImage.ScaleToFit = false;
 formalImage.Caption = sprintf('row: %d, col: %d', tile.Row, tile.Col);
 add(rpt, formalImage);
end

Generate and display the report.

close(rpt);
rptview(rpt);

Define sliceImage Local Function

To slice an image file into tiles, read in the image file and copy tile-size parts into multiple image files.

function tiles = sliceImage(imgFile, tileSize)
 % Read in the image file and determine the number of row and column
 % tiles. Note that the image data is row-major, where the rows are
 % specified first and the columns are second.
 img = imread(imgFile);
 imgSize = size(img);

 imgRows = imgSize(1); % image height
 imgCols = imgSize(2); % image width

 tileNumRows = tileSize(2); % tile height
 tileNumCols = tileSize(1); % tile width

 numCols = ceil(imgCols / tileNumCols);
 numRows = ceil(imgRows / tileNumRows);

 % Preallocate the tile data structures.
 tiles = cell(1, numCols*numRows);

 % Determine the base filename to create the tile image filenames.
 [fPath, fName, fExt] = fileparts(imgFile);
 tileName = fullfile(fPath, fName);

4 Creating Simulink Reports

4-30

 % Iterate through all rows and columns.
 count = 0;
 for rowIdx = 1:numRows
 for colIdx = 1:numCols
 % Determine the starting and ending image data indices to copy
 % into the tile image. At the edges, the ending indices are
 % the number of rows and number of columns.
 rowStart = (rowIdx - 1) * tileNumRows + 1;
 rowEnd = rowStart + tileNumRows - 1;

 colStart = (colIdx - 1) * tileNumCols + 1;
 colEnd = colStart + tileNumCols - 1;

 if (rowEnd >= imgRows)
 rowEnd = imgRows;
 end
 nTileRows = rowEnd - rowStart + 1;

 if (colEnd >= imgCols)
 colEnd = imgCols;
 end
 nTileCols = colEnd - colStart + 1;

 % Copy the tile image data onto a white image tile.
 tileImg = uint8(255 * ones(tileNumRows, tileNumCols, 3));
 tileImg(1:nTileRows, 1:nTileCols, :) = img(rowStart:rowEnd,...
 colStart:colEnd, :);

 % Write out the image tile.
 outFile = sprintf('%s_%d_%d.%s', tileName, rowIdx, colIdx, fExt);
 imwrite(tileImg, outFile);

 % Create the tile data structure to describe the tile.
 count = count + 1;
 tiles{count} = struct(...
 'File', outFile, ...
 'Row', rowIdx, ...
 'Col', colIdx);
 end
 end
end

 Tile Simulink Diagrams

4-31

Create a Simulink Bus Object Report
This example shows how to create a report that describes all of the bus objects used by a Simulink®
model. This report creates a chapter for each bus object. Each chapter has a section for the bus
object hierarchy, bus object properties table, bus elements properties table, and list of blocks that use
the bus.

Import Packages

Import the Report API packages so that you do not have to use long, fully qualified class names.

import mlreportgen.report.*
import slreportgen.finder.*
import slreportgen.report.*

Open Model

Open a model that has bus objects.

model = "sldemo_bus_arrays";
open_system(model);

Create Report

Create and open a report object. To create a Microsoft® Word, HTML, or single-file HTML report,
change "pdf" to "docx", "html", or "html-file", respectively.

rpt = slreportgen.report.Report(model + "_bus_object_report","pdf");
open(rpt);

Add a title page and a table of contents.

4 Creating Simulink Reports

4-32

titlepage = TitlePage("Title", model + ": Bus Object Report","Author","John Doe");
add(rpt,titlepage);
toc = TableOfContents();
add(rpt, toc);

Find and Report on Bus Objects

Find all the variables used in the model.

finder = ModelVariableFinder(model);

Loop through the variable finder results to find the bus objects and report on them. Use the
getVariableValue method to identify which variables are bus objects. Use the
slreportgen.report.BusObject reporter to report on the bus objects.

while hasNext(finder)
 result = next(finder);
 if isa(getVariableValue(result),"Simulink.Bus")
 % Create a Bus object reporter
 busReporter = BusObject(result);
 % Create a Chapter
 chapter = Chapter(busReporter.Name);
 % Add bus to chapter
 add(chapter,busReporter)
 % Add chapter to the report
 add(rpt,chapter);
 end
end

Close Report

Close and view the report.

close(rpt);
rptview(rpt);

View Sample Report

To see a more comprehensive bus object report, view the asbhl20_bus_object_report.pdf that
is available with this example. You must have Aerospace Blockset™ to open the asbhl20 model.

rptview asbhl20_bus_object_report.pdf

See Also
slreportgen.finder.ModelVariableResult | slreportgen.report.ModelVariable |
slreportgen.finder.ModelVariableFinder | slreportgen.report.BusObject |
getVariableValue

More About
• “Report Generation for Simulink and Stateflow Elements” on page 1-9
• “What Is a Reporter?”

 Create a Simulink Bus Object Report

4-33

Report System Inputs and Outputs
This example shows how to create a report that describes the inputs and outputs of a model or
subsystem. The report includes a chapter for the top-level model and each subsystem in the model.
Each chapter includes a section for the inputs and outputs and a section for the blocks in the system.

This image shows the input and output summaries included in the report.

Open Model

Open a model. This example uses a model that has top-level input and output blocks and a subsystem
with inputs and outputs. The top-level input signals are stored in a variable, mappedIO, which is
created when the model is opened.

model = "slreportgen_demo_SystemIO";
open_system(model);

Report Setup

Import the Report Generator API packages so you do not have to use long, fully-qualified class names.

import mlreportgen.report.*
import slreportgen.report.*
import slreportgen.finder.*

Create and open a Simulink report object. To create a Microsoft® Word, HTML, or single-file HTML
report, change "pdf" to "docx", "html", or "html-file", respectively.

4 Creating Simulink Reports

4-34

rpt = slreportgen.report.Report(model + "_SystemIO_Report","pdf");
open(rpt);

Add a title page and table of contents.

titlepage = TitlePage("Title",model + ": System I/O Report","Author","Jane Doe");
add(rpt,titlepage);
toc = TableOfContents();
add(rpt, toc);

Report on Inputs and Outputs

Find and loop through all systems in the model.

finder = SystemDiagramFinder(model);
while hasNext(finder)
 system = next(finder);

Create a new chapter and add the diagram result.

 ch = Chapter("Title",sprintf("System %s",system.Name));
 add(ch,system);

Create an "Inputs and Outputs" section and a SystemIO reporter.

 ioSect = Section("Inputs and Outputs");
 ioRptr = SystemIO(system);

For subsystem inputs and outputs, the SystemIO reporter by default includes details about the input
and output ports of the subsystem. For model inputs and outputs, the reporter includes details about
inport and outport blocks. If the system is a model, set the SystemIO options to omit these block
details because this report includes the same information in the "Blocks" section of the chapter.

 if strcmp(system.Type,"Simulink.BlockDiagram")
 ioRptr.ShowDetails = false;
 end
 add(ioSect,ioRptr);
 add(ch,ioSect);

Create a section to include details about each block in the system. Source and destination blocks
included in SystemIO summary tables link to the corresponding block details in this section.

 blkSect = Section("Blocks");
 blkFinder = BlockFinder(system);
 results = find(blkFinder);
 add(blkSect,results);
 add(ch,blkSect);

Add the chapter to the report.

 add(rpt,ch);
end

Close Report

Close and view the report.

 Report System Inputs and Outputs

4-35

close(rpt);
rptview(rpt);

4 Creating Simulink Reports

4-36

Reporting on DocBlock Blocks
This example shows how to include the contents of Simulink DocBlock blocks in a Microsoft® Word
report generated by the Report API. The example model, slreportgen_demo_docblock, contains
only DocBlock blocks, with one block for each kind of DocBlock document type:

• RTF
• HTML
• Text

In the generated report, the contents of the DocBlock blocks look like this:

Import the API packages so that you can refer to API classes by their unqualified names, that is,
without the names of the class packages in which they reside.

import mlreportgen.report.*
import slreportgen.report.*
import slreportgen.finder.*
import mlreportgen.dom.*

Load the model for this example.

model = 'slreportgen_demo_docblock';
load_system(model);

Create a container to hold the report content. To avoid a compilation error due to the model
containing only virtual blocks, set the CompileModelBeforeReporting property of the report
object to false.

rpt = slreportgen.report.Report('ModelDoc', 'docx');
rpt.CompileModelBeforeReporting = false;

Add a title page and table of contents.

add(rpt,TitlePage('Title',sprintf('%s Model Documentation',model)));
add(rpt,TableOfContents);

Find and loop through all the systems in the model.

finder = SystemDiagramFinder(model);
for system = find(finder)

 Reporting on DocBlock Blocks

4-37

Create a chapter for each system. Include the system name in the chapter title. Use the chapter to
report on the DocBlock content of the system.

 ch = Chapter('Title',sprintf('System %s', system.Name));

Find all the DocBlock blocks in the current system. Each result returns the DocBlock reporter for the
found DocBlock. The add method invokes the DocBlock reporter.

 docBlockFinder = BlockFinder(system);
 docBlockFinder.Properties = {'MaskType', 'DocBlock'}';
 results = find(docBlockFinder);
 if ~isempty(results)
 add(ch, results);
 else
 add(ch, "This system does not have documentation.");
 end
 add(rpt,ch)
end

Close and view the report.

close(rpt);
close_system(model);
rptview(rpt);

See Also
slreportgen.report.DocBlock | slreportgen.finder.BlockFinder |
slreportgen.finder.BlockResult | slreportgen.finder.SystemDiagramFinder |
DocBlock

More About
• “Report Generation for Simulink and Stateflow Elements” on page 1-9
• “What Is a Reporter?”

4 Creating Simulink Reports

4-38

Report Model Notes
This example shows how to create a report that embeds model notes. The report includes a chapter
for each system in the model. Each chapter includes a system snapshot and any notes for that system.

Open Model

Open a model that has notes.

model = "slreportgendemo_autotrans";
open_system(model);

Report Setup

Import the Report Generator API packages so that you do not have to use long, fully qualified class
names.

import mlreportgen.report.*
import slreportgen.report.*
import slreportgen.finder.*

Create and open a Simulink report object. To create a Microsoft® Word, HTML, or single-file HTML
report, change "pdf" to "docx", "html", or "html-file", respectively.

rpt = slreportgen.report.Report(model + "_Notes_Report","pdf");
open(rpt);

Add a title page and table of contents.

titlepage = TitlePage("Title",model);
add(rpt,titlepage);
toc = TableOfContents();
add(rpt,toc);

Report on systems

Find and loop through all of the systems in the model.

finder = DiagramFinder(model);
while hasNext(finder)
 system = next(finder);

Create a new chapter and add the system result, which adds a system snapshot to the report.

 ch = Chapter("Title",system.Name);
 add(ch,system);

Add model notes to the current system. If the current system does not have any notes associated with
it, nothing is added.

 notes = Notes(system);
 add(ch,notes);

Add the chapter to the report

 add(rpt,ch);
end

 Report Model Notes

4-39

Close Report

Close and view the report.

close(rpt);
rptview(rpt);

See Also
slreportgen.finder.DiagramResult

More About
• “Report Generation for Simulink and Stateflow Elements” on page 1-9
• “What Is a Reporter?”

4 Creating Simulink Reports

4-40

Report Execution Order of Tasks and Blocks in a Simulink
System

This example shows how to create a report that displays information about all tasks executed by a
model and the order in which blocks execute during each task.

Block execution can be separated into different tasks based on sample time if the “Treat each
discrete rate as a separate task” configuration parameter is selected. Export-function models and
systems containing certain blocks, such as asynchronous interrupts or event-triggered subsystems,
also group block execution into different tasks. See “Control and Display Execution Order” for more
information on viewing task information and block execution order in Simulink®.

This image shows a diagram of the sample model slreportgen_demo_ExecutionOrder and the
task summary and block execution order for the model.

 Report Execution Order of Tasks and Blocks in a Simulink System

4-41

4 Creating Simulink Reports

4-42

Because the model is a continuous system, the main task, Cont, has a sample time value of 0. In all
models, constant blocks are separated into Constant tasks.

MultiplyMu is a nonvirtual subsystem. By default, nonvirtual subsystem entries in a block execution
order list contain a link to the block execution order list for that subsystem. Alternatively, you can
configure the ExecutionOrder reporter options to display subsystem blocks as a nested list.

Open Model

Open a model. This example uses a single-tasking model, that is, all blocks except constant blocks
execute during the same task.

model = "slreportgen_ExecutionOrder_example";
open_system(model);

Report Setup

Import the Report Generator API packages so you do not have to use long, fully qualified class names.

import mlreportgen.report.*
import slreportgen.report.*
import slreportgen.finder.*

Create and open a Simulink report object. To create a Microsoft® Word, HTML, or single-file HTML
report, change "pdf" to "docx", "html", or "html-file", respectively.

rpt = slreportgen.report.Report(model + "_Report","pdf");
open(rpt);

Add a title page and table of contents.

titlepage = TitlePage("Title",model + ": Execution Order Report","Author","Jane Doe");
add(rpt,titlepage);
toc = TableOfContents();
add(rpt, toc);

Report on Task and Block Execution Order

Find and loop through all systems in the model.

finder = SystemDiagramFinder(model);
while hasNext(finder)
 system = next(finder);

Create a new chapter and add the diagram result.

 ch = Chapter("Title",sprintf("System %s",system.Name));
 add(ch,system);

Report the execution order of the system only if it is a block diagram or a nonvirtual subsystem.
Blocks within virtual subsystems are reported in the parent's block execution order.

 isNonvirtualSubsystem = strcmp(system.Type, "Simulink.SubSystem") ...
 && strcmp(get_param(system.Object, "IsSubsystemVirtual"), "off");
 if strcmp(system.Type,"Simulink.BlockDiagram") || isNonvirtualSubsystem

Create an Execution Order section and an ExecutionOrder reporter.

 Report Execution Order of Tasks and Blocks in a Simulink System

4-43

 eoSect = Section("Execution Order");
 eoRptr = ExecutionOrder(system);

For subsystems, set the ExecutionOrder options so that task details are not reported, because this
information is already reported by the parent block diagram execution order.

 if isNonvirtualSubsystem
 eoRptr.ShowTaskDetails = false;
 end

Add the ExecutionOrder reporter to the Execution Order chapter, and add the chapter to the
report.

 add(eoSect,eoRptr);
 add(ch,eoSect);
 end

Create a section to include details about each block in the system. Blocks included in
ExecutionOrder block execution order lists link to the corresponding block details in this section.

 blkSect = Section("Blocks");
 blkFinder = BlockFinder(system);
 results = find(blkFinder);
 add(blkSect,results);
 add(ch,blkSect);

Add the chapter to the report.

 add(rpt,ch);
end

Close and View the Report

close(rpt);
rptview(rpt);

View Sample Reports

To see how execution order is reported for other types of models, view the sample reports available
with this example.

Multitasking Models

The sample model slreportgen_demo_Multitasking is configured to treat each discrete sample
time as a separate task. The sample time for blocks In1_1s, SS1, and SS2 is 1 second, and the
sample time for block In2_2s is 2 seconds.

4 Creating Simulink Reports

4-44

The model is also configured to display blocks color-coded by sample time. Blocks that execute at a 1
second sample time are red, and blocks that execute at a 2 second sample time are green. Multirate
blocks, such as the rate-transition block between the Integrator block and the two subsystems, are
yellow. To programmatically configure a model in this way, execute this command:

set_param(model, "SampleTimeColors", "on");

The execution order for this model reports two tasks. The Trigger column of the task details table
reports the sample time, in seconds, for each task.

The model blocks are separated by task. The rate-transition block executes during both tasks, so it is
included in both lists. However, only its output port executes during task D1, and only its input port
executes during task D2.

 Report Execution Order of Tasks and Blocks in a Simulink System

4-45

To view the full sample report, execute this command:

rptview("slreportgen_demo_Multitasking_Report.pdf")

Nonperiodic Tasks

Some tasks, such as those created by asynchronous interrupts or event listeners, do not execute
based on sample time. For example, the sample model slreportgen_demo_InitResetTerm uses
three subsystems with the execution controlled by event listeners. Each event listener is configured
to execute a subsystem when it receives an initialize, reset, or terminate function-call event.

4 Creating Simulink Reports

4-46

The initialize, reset, and terminate events are reported as separate tasks in the execution order. Their
execution does not directly depend on the sample time of the model, so they are not given an order
number in the task table. The SourceBlock column denotes which block defines the task.

To view the full sample report, execute this command:

rptview("slreportgen_demo_InitResetTerm_Report.pdf")

Conditional Execution

The sample model slreportgen_demo_ConditionalExecution contains an If block and a
Function-Call Generator block that control when certain subsystems within the model execute.

 Report Execution Order of Tasks and Blocks in a Simulink System

4-47

The conditionally executed subsystems are not reported in the block execution order list because they
do not necessarily execute at every time step. Instead, they are included in a Conditional
Execution table that is reported after the block execution order list.

4 Creating Simulink Reports

4-48

To view the full sample report, execute this command:

rptview("slreportgen_demo_ConditionalExecution_Report.pdf")

See Also
slreportgen.report.ExecutionOrder

More About
• “Report Generation for Simulink and Stateflow Elements” on page 1-9
• “Generate a System Design Report with the Report API” on page 2-8
• “What Is a Reporter?”
• “Treat each discrete rate as a separate task”
• “Control and Display Execution Order”

 Report Execution Order of Tasks and Blocks in a Simulink System

4-49

Create a Simulink Report Generator Report Interactively
This example shows how to use the Report Explorer to design a report setup file and generate a
report that does the following:

• Opens a Simulink model for the van der Pol equation, called the slrgex_vdp model.
• Sets the Gain parameter for the Mu block to five different values.
• Simulates the model each time the Gain parameter is set.
• Collects the results. Results that fall within a specified range appear in a table in the generated

report.

You do not need to know MATLAB or Simulink software to create and run this example report.
However, knowledge of these products will help you understand the MATLAB code and model
simulation that executes.

To create this report, you perform these main tasks:

• “Specify Report Options in the Setup File” on page 4-50
• “Add Report Content with Components” on page 4-51

This example includes separate sections for different kinds of report creation and generation task.
Each section builds on the previous sections. However, if you want to see the report setup
components for a later section without doing the previous sections, in MATLAB you can view the
completed report setup file by opening the simulink-dynamic.rpt setup file.

setedit simulink-dynamic.rpt

The report is for the slrgex_vdp model.

Specify Report Options in the Setup File
To create and configure the report setup file:

1 Start Simulink.
2 Open the Report Explorer from the Simulink Toolstrip. On the Apps tab, in the Simulation

Graphics and Reporting section, click Report Generator.
3 Select File > New to create a report setup file.
4 Save the report setup file.

In the Properties pane:

a Specify where to save the report setup file. To save it in the current working folder, select
Present Working Directory from the Directory selection list.

b Specify the report format. In the File format selection list, select Acrobat (PDF).

Tip In your reports, if you want to include hyperlinks in system snapshots, use Direct PDF
(from template) file format.

c Enter a description for the report. In the Report description text box, replace the existing
contents with the following text.

4 Creating Simulink Reports

4-50

Tip Copy and paste this code from the HTML documentation into the Report Explorer.

Simulink Dynamic Report

This report opens up a model, sets a block parameter
several times, simulates the model, and collects the
results. Results that fall within a specified range are
displayed in a table after the test is complete.

The report is configured to test the slrgex_vdp model only.
By selecting the Eval String component immediately
below the Report component, you can modify
* model
* block
* parameter
* tested values

5 Click File > Save As to save the report setup file as simulink_tutorial.rpt.

The Outline pane on the left displays the new file name.

To create the content for the report, see “Add Report Content with Components” on page 4-51.

Add Report Content with Components
• “Report Components” on page 4-52
• “Add MATLAB Code” on page 4-53
• “Add a Title Page” on page 4-57
• “Open the Simulink Model” on page 4-58
• “Add Logical Then and Logical Else Components” on page 4-60
• “Error If Model Cannot Be Opened” on page 4-61
• “Create the Body of the Report” on page 4-63
• “Process with a Model Loop Component” on page 4-63
• “Add a Paragraph for Each Model” on page 4-65
• “Insert a Snapshot of the Model” on page 4-66
• “Add a Loop for Processing the Model” on page 4-67
• “Block Parameter Value from a MATLAB Expression” on page 4-68
• “Create a Section for Each Iteration” on page 4-69
• “Insert the Block Value” on page 4-70
• “Set a Parameter Value” on page 4-70
• “Check Value Using a Logical If Component” on page 4-71
• “Simulate the Model Using a Model Simulation Component” on page 4-73

 Create a Simulink Report Generator Report Interactively

4-51

• “Create a Post-Test Analysis Section” on page 4-78

Report Components

Report components specify what information to include in the report. Components are self-contained,
modular MATLAB objects that control the report-generation process and insert elements, such as
tables, lists, and figures, into a report setup file. Use components to customize the appearance and
output of reports.

For more information, see “Report Components” on page 1-24.

The following figure shows a sample page from the report you create in this example, and which
components you use to produce this output.

Note Do not deactivate report components that you add to the report setup file.

4 Creating Simulink Reports

4-52

Add MATLAB Code

Note This section builds on the previous tasks. To see the completed report setup file, open the
simulink-dynamic.rpt setup file.

setedit simulink-dynamic.rpt

The report is for the slrgex_vdp model.

The first component to add is the Evaluate MATLAB Expression component, which evaluates
MATLAB commands in the workspace. The code in this component assigns initial values to variables
used in this example.

1 In the Outline pane on the left, select simulink_tutorial.rpt.

2 In the Library pane in the middle, under the MATLAB category, select Evaluate MATLAB
Expression.

3 In the Properties pane on the right, click the icon next to Add component to current report to
insert the component into the report.

Note You cannot edit the component information in the Properties pane on the right until you
add the component to the report.

In the Outline pane on the left, the Evaluate MATLAB Expression component appears under
the simulink_tutorial report setup file. The Simulink Report Generator software abbreviates
the component name to Eval.

The icon in the upper left corner of the Eval component icon indicates that this component
cannot have child components. By default, any components you add while the Eval component is
selected are siblings of this component.

The options for the Evaluate MATLAB Expression component appear in the Properties pane on
the right.

 Create a Simulink Report Generator Report Interactively

4-53

4 Clear the Insert MATLAB expression in report and the Display command window output
in report check boxes so you do not include MATLAB code or output in this report.

5 Add MATLAB code to the Expression to evaluate in the base workspace text box to specify
the following values:

• The model name
• The block name
• The block parameter
• Parameter values
• Other initial values required for processing the slrgex_vdp model

Replace the existing text with the following MATLAB code.

%The name of the model
%which will be changed
expModel='slrgex_vdp';

%The name of the block in the model
%which will be changed
expBlock='slrgex_vdp/Mu';

%The name of the block parameter
%which will be changed

4 Creating Simulink Reports

4-54

expParam='Gain';

%The values which will be set
%during experimentation.
expValue=[-1 0 .5 1 2];

%expValue can be either a vector
%or a cell array

testMin=2.1;
testMax=3;

%---- do not change code below line ---

try
 open_system(expModel);
end

expOkValues=cell(0,2);

Note When you change a field in the Properties pane on the right, the field background changes
color (the default is a cream color), indicating that there are unapplied changes to that field. As
soon as you perform operations on another component, the Simulink Report Generator software
applies the changes, and the background color becomes white again.

6 Select the Evaluate this expression if there is an error check box.
7 In the field under the check box, replace the existing text with the following text:

disp(['Error during eval: ', evalException.message])

The Report Explorer window now looks as follows.

 Create a Simulink Report Generator Report Interactively

4-55

Tip To run the commands that you specified in your MATLAB expression, click the Eval Now
button. This button is located at the upper-right corner of the Report Explorer. This is an easy
way to ensure that your commands are correct and will not cause report generation problems.

8 Click File > Save to save the report setup file.

For information about handling error conditions, see “Error Handling for MATLAB Code”.

4 Creating Simulink Reports

4-56

Add a Title Page

Note This section builds on the previous tasks. To see the completed report setup file, open the
simulink-dynamic.rpt setup file.

setedit simulink-dynamic.rpt

The report is for the slrgex_vdp model.

Create a custom title page for your report using the Title Page component.

1 In the Outline pane on the left, select the Eval component.

2 In the Library pane in the middle, under the Formatting category, click Title Page.

3 Click the icon next to Add component to current report.

The Title Page component appears in the Outline pane.

Note To use the Title Page component, you need to have a Chapter component in your report .
You have not yet added a Chapter component, so the Properties pane displays a message
indicating that chapters are required for the Title Page component to appear correctly. Because
later in this example you add Chapter components to this report, you can ignore that message.

4 In the Properties pane on the right:

 Create a Simulink Report Generator Report Interactively

4-57

a In the Title text box, enter:

Dynamic Simulink Report
b In the Subtitle text box, enter:

Using Simulink Report Generator to Document Changes
c In the Options section, choose Custom Author from the selection list.
d Enter your name in the text box.
e Select the Include report creation date check box.
f Select the default date and time format from the selection list. The Properties pane on the

right looks as follows.

5 Save the report setup file.

Open the Simulink Model

Note This section builds on the previous tasks. To see the completed report setup file, open the
simulink-dynamic.rpt setup file.

setedit simulink-dynamic.rpt

The report is for the slrgex_vdp model.

The following statement in the Evaluate MATLAB Expression component that you created in “Add
MATLAB Code” on page 4-53 tries to open the slrgex_vdp model:

try
 open_system(expModel);
end

Tip Select the Eval component in the Outline pane on the left to look at this code again.

To see if the slrgex_vdp model was successfully opened, test the result of the open_system
command using a Logical If component.

4 Creating Simulink Reports

4-58

1 In the Outline pane on the left, select the Title Page component.
2 In the Library pane in the middle, under the Logical and Flow Control category, select Logical

If. This component checks to see if a given condition is true or false; in this case, if the model
opened successfully.

3 In the Properties pane on the right, click the icon next to Add component to current report.
The Logical If component appears as if in the Outline pane.

These components are child components of the report and siblings of one another. Components
can have parent, child, and sibling relationships.

This component can have child components. “Add Logical Then and Logical Else Components” on
page 4-60 explains how to add two child components to the if component.

4 In the Properties pane on the right, in the Test expression text box, replace the default text,
true, with the following text:

strcmp(bdroot(gcs),expModel)

The strcmp function compares the name of the open Simulink model and the value of expModel,
which was set to 'slrgex_vdp'. It tests to see if the slrgex_vdp model opened successfully.
strcmp returns 1 (true) if the two strings match, and 0 (false) if not.

5 Save the report setup file.

The if component name in the Outline pane changes to include the expression that you added.

 Create a Simulink Report Generator Report Interactively

4-59

Add Logical Then and Logical Else Components

Note This section builds on the previous tasks.

To see the completed report setup file, open the simulink-dynamic.rpt setup file.

setedit simulink-dynamic.rpt

The report is for the slrgex_vdp model.

The if strcmp(bdroot(gcs), expModel) component has two possible results. Add two child
components to the report setup file to process these cases.

1 In the Outline pane on the left, select the if component.

2 In the Library pane in the middle, under the Logical and Flow Control category, double-click
Logical Then.

3 In the Outline pane on the left, select the if component again.
4 In the Library pane in the middle, under the Logical and Flow Control category, double-click

Logical Else.

Both elements are added as child components to the if component, as shown in the Outline pane.

5 To move the else component under the then component, select the else component and click the
down arrow on the toolbar once. The Outline pane on the left looks as follows.

4 Creating Simulink Reports

4-60

6 Save the report setup file.

Error If Model Cannot Be Opened

Note This section builds on the previous tasks. To see the completed report setup file, open the
simulink-dynamic.rpt setup file.

setedit simulink-dynamic.rpt

The report is for the slrgex_vdp model.

If the if strcmp(bdroot(gcs), expModel) component fails (the slrgex_vdp model cannot
open), the else component executes. Display an error message in the report using the Chapter/
Subsection component.

1 In the Outline pane on the left, select the else component.

2 In the Library pane in the middle, under the Formatting category, double-click Chapter/
Subsection to add it as a child of the else component. This component displays an error
message if an error occurs when opening the slrgex_vdp model.

 Create a Simulink Report Generator Report Interactively

4-61

Note When you add a component to a report, it is added by default as a child component unless
the selected component cannot have child components.

3 In the Properties pane on the right, choose Custom from the Title selection list, and then enter
the following text in the text box:

Load Model Failed.

Save the report file.

The Outline pane looks as follows.

4 In the Outline pane on the left, select the Chapter component.
5 In the Library pane in the middle, under Formatting, double-click Paragraph.
6 In the Properties pane on the right, enter the following text in the Paragraph Text text box to

display the following error message:

Error: Model %<expModel> could not be opened.

The expression %<expModel> indicates that the value of the workspace variable expModel is
inserted into the text, as in the following example.

Error: Model slrgex_vdp could not be opened.
7 In the Outline pane on the left, select the Chapter.
8 Save the report setup file.

The Outline pane looks as follows.

4 Creating Simulink Reports

4-62

Create the Body of the Report

Note This section builds on the previous tasks. To see the completed report setup file, open the
simulink-dynamic.rpt setup file.

setedit simulink-dynamic.rpt

The report is for the slrgex_vdp model.

Creating the body of the report involves setting up components and code for dynamic execution of
report components. In this example, you perform the following tasks:

• “Process with a Model Loop Component” on page 4-63
• “Add a Paragraph for Each Model” on page 4-65
• “Insert a Snapshot of the Model” on page 4-66
• “Add a Loop for Processing the Model” on page 4-67
• “Block Parameter Value from a MATLAB Expression” on page 4-68
• “Create a Section for Each Iteration” on page 4-69
• “Insert the Block Value” on page 4-70
• “Set a Parameter Value” on page 4-70
• “Check Value Using a Logical If Component” on page 4-71
• “Simulate the Model Using a Model Simulation Component” on page 4-73
• “Create a Post-Test Analysis Section” on page 4-78

Each action requires a separate component under the then component. For information about the
then component in this report, see “Add Logical Then and Logical Else Components” on page 4-60.

Process with a Model Loop Component

Note This section builds on the previous tasks. To see the completed report setup file, open the
simulink-dynamic.rpt setup file.

setedit simulink-dynamic.rpt

The report is for the slrgex_vdp model.

 Create a Simulink Report Generator Report Interactively

4-63

The report changes the Gain parameter for the Mu block in the slrgex_vdp model several times.
This task requires a Model Loop component.

1 In the Outline pane on the left, select the then component.
2 In the Library pane in the middle, scroll down to the Simulink category, and then double-click

Model Loop. It is added as a child of the then component.

The Properties pane on the right looks as follows.

3 In the Properties pane on the right:

a Select the Active check box to process the slrgex_vdp model.
b In the Traverse model selection list, select Selected system(s) only to traverse only

the slrgex_vdp model.
c Select Model root from the Starting system(s) selection list.
d At the bottom of the Properties pane on the left, select the Create section for each object

in loop check box to create a chapter or section for each model. When you select this check
box, the component name in the Outline pane on the left changes to Model Loop Chapter.

4 Creating Simulink Reports

4-64

e Select the Display the object type in the section title check box to include the object type
(in this example, model) in the title name.

f Clear the Create link anchor for each object in loop check box.
4 Save the report setup file.

Add a Paragraph for Each Model

Note This section builds on the previous tasks. To see the completed report setup file, open the
simulink-dynamic.rpt setup file.

setedit simulink-dynamic.rpt

The report is for the slrgex_vdp model.

In each Model Loop Chapter, add an explanation using the Paragraph component.

1 In the Outline pane on the left, select the Model Loop Chapter component.
2 In the Library pane in the middle, scroll up to the Formatting category, and then double-click

Paragraph. The Paragraph component is added as a child of the Model Loop Chapter
component.

3 In the Properties pane on the right, in the Paragraph Text text box, enter the following text:

This report demonstrates Simulink Report Generator's ability
to experiment with Simulink systems and auto-document

 Create a Simulink Report Generator Report Interactively

4-65

the results. In this report, you load the model %<expModel>
and simulate it %<length> times. This report modifies the
%<expBlock> block's "%<expParam>" value, setting it to the
values %<expValue>. Each iteration of the test includes
a set of scope snapsnots in the report.

When this report is generated, the variable names, preceded by percent signs (%) and enclosed in
angle brackets (<>), are replaced with the values of those variables in the MATLAB workspace.

4 Save the report setup file.

Insert a Snapshot of the Model

Note This section builds on the previous tasks. To see the completed report setup file, open the
simulink-dynamic.rpt setup file.

setedit simulink-dynamic.rpt

The report is for the slrgex_vdp model.

Inside each Model Loop Chapter component, include a snapshot of the current model using the
System Snapshot component.

1 In the Outline pane on the left, select the Model Loop Chapter component.
2 In the Library pane in the middle, scroll down to the Simulink category, and then double-click

the System Snapshot component.

This component inserts an image of the current model into your report. The Properties pane on
the right looks as follows.

3 In the Properties pane on the right:

a Select Zoom from the Scaling selection list.
b Enter 70 as the % value.

4 In the Outline pane on the left, select the System Snapshot component.
5 Click the down arrow on the toolbar once to move it under the Paragraph component.

4 Creating Simulink Reports

4-66

6 Save the report setup file.

Add a Loop for Processing the Model

Note This section builds on the previous tasks. To see the completed report setup file, open the
simulink-dynamic.rpt setup file.

setedit simulink-dynamic.rpt

The report is for the slrgex_vdp model.

Create a loop to process the model %length times using the For Loop component.

1 In the Outline pane on the left, select the System Snapshot component.
2 In the Library pane in the middle, under the Logical and Flow Control category, double-click

For Loop. The For Loop component is added as a sibling of the System Snapshot component.

3 In the Properties pane on the right:

a In the End text box, replace the existing text with the following text:

length(expValue)

expValue is the array of Gain parameter values assigned in the Eval component with the
command expValue=[-1 0 0.5 1 2];. The expression length(expValue) evaluates to
5 in this example.

b In the Variable name text box, replace the existing text with the name of the for loop
variable. Enter the following text:

expIteration

 Create a Simulink Report Generator Report Interactively

4-67

The name of the For component in the Outline pane on the left changes to reflect the loop
variable and the termination value.

4 Save the report setup file.

Block Parameter Value from a MATLAB Expression

Note This section builds on the previous tasks. To see the completed report setup file, open the
simulink-dynamic.rpt setup file.

setedit simulink-dynamic.rpt

The report is for the slrgex_vdp model.

For each iteration, get a value from the expValue array to use as the Gain parameter value. This
task requires an Evaluate MATLAB Expression component.

1 In the Outline pane on the left, select the for component.
2 In the Library pane in the middle, under the MATLAB category, double-click Evaluate MATLAB

Expression. In the Outline pane, the component name is shortened to Eval.

3 On the Properties pane on the right:

a Clear the Insert MATLAB expression in report and Display command window output
in report check boxes.

b Enter the following text in the Expression to evaluate in the base workspace text box:

%Evaluate this string in the base workspace

if iscell(expValue)
 Iteration_Value=expValue{expIteration};
else
 Iteration_Value=...
 num2str(expValue(expIteration));
end

The Iteration_Value variable represents the designated array element.
c Clear the Evaluate this expression if there is an error check box.

4 Creating Simulink Reports

4-68

4 Save the report setup file.

Create a Section for Each Iteration

Note This section builds on the previous tasks. To see the completed report setup file, open the
simulink-dynamic.rpt setup file.

setedit simulink-dynamic.rpt

The report is for the slrgex_vdp model.

Create a separate section for each iteration of the loop that includes the data using the Chapter/
Subsection component.

1 In the Outline pane on the left, under the for component, select the Eval component.
2 In the Library pane in the middle, under the Formatting category, double-click Chapter/

Subsection to add it as a sibling. This component is automatically added as Section 1 because it
is inside a Chapter component (the Model Loop Chapter component).

3 In the Properties pane on the right:

a In the Title selection list, select Custom.
b In the text box, enter the following title:

Processing the slrgex_vdp model

This indicates that the section title comes from the first child component. Do not change any
other properties.

4 Save the report setup file.

 Create a Simulink Report Generator Report Interactively

4-69

Insert the Block Value

Note This section builds on the previous tasks. To see the completed report setup file, open the
simulink-dynamic.rpt setup file.

setedit simulink-dynamic.rpt

The report is for the slrgex_vdp model.

Insert the Gain value that is used for each simulation.

1 In the Outline pane on the left, select the Section 1 component.
2 In the Library pane in the middle, under the MATLAB category, double-click Insert Variable.
3 In the Properties pane on the right:

a In the Variable name text box, enter Iteration_Value.
b In the Display as selection list, select Paragraph.

The Properties pane on the right looks as follows.

4 Save the report setup file.

Set a Parameter Value

Note This section builds on the previous tasks. To see the completed report setup file, open the
simulink-dynamic.rpt setup file.

setedit simulink-dynamic.rpt

The report is for the slrgex_vdp model.

For each iteration, set the Gain parameter to the value that you extracted from the expValue array.

4 Creating Simulink Reports

4-70

1 In the Outline pane on the left, select the Variable component.
2 In the Library pane in the middle, under the MATLAB category, double-click Evaluate MATLAB

Expression. This component is added as a sibling of the Variable component.

3 In the Properties pane on the right, clear the Insert MATLAB expression in report and
Display command window output in report check boxes.

4 In the Expression to evaluate in the base workspace text box, replace the existing text with
the following text.

set_param(expBlock,expParam,Iteration_Value);
okSetValue=(1);

The set_param command sets the value of the Gain parameter for the Mu block in the
slrgex_vdp model to the value of Iteration_Value.

5 Make sure you select Evaluate this expression if there is an error. Enter the following text
into the text box:

okSetValue=logical(0);

If the set_param command works, okSetValue is set to 1. If an error occurs, okSetValue is
set to 0. The next component then reports the error and terminates processing.

6 Save the report setup file.

The Outline pane on the left looks as follows.

Check Value Using a Logical If Component

Note This section builds on the previous tasks. To see the completed report setup file, open the
simulink-dynamic.rpt setup file.

 Create a Simulink Report Generator Report Interactively

4-71

setedit simulink-dynamic.rpt

The report is for the slrgex_vdp model.

Check the value of okSetValue using a Logical If component. If the value is 0, the simulation
cannot proceed because the Gain parameter could not be set.

1 In the Outline pane on the left, select the Eval component for the set_param command.
2 In the Library pane in the middle, under the Logical and Flow Control category, double-click

Logical If. The component is added as a sibling of Eval.

3 In the Properties pane on the right, in the Test expression text box, replace true with
okSetValue.

okSetValue can be 1 (true) or 0 (false), so insert two components — Logical Then and Logical
Else — to process those conditions:

1 In the Outline pane on the left, select the if (okSetValue) component.
2 To insert Logical Then and Logical Else in the correct order:

a In the Library pane in the middle, double-click the Logical Else component.
b Select the if (okSetValue) component again.
c Double-click the Logical Then component. The Outline pane on the left looks as follows.

3 In the Outline pane on the right, select the else component.

4 Creating Simulink Reports

4-72

4 In the Library pane in the middle, double-click Paragraph.

If okSetValue = 0, the Gain parameter value is not set and the report displays an error.
5 In the Properties pane on the right:

a Choose Custom title from the Title Options selection list.
b Enter Error in the text box next to the selection list.
c Enter the following text into the Paragraph Text text box:

Could not set %<expBlock> "%<expParam>" to value
%<Iteration_Value>.

6 Save the report.

Simulate the Model Using a Model Simulation Component

Note This section builds on the previous tasks. To see the completed report setup file, open the
simulink-dynamic.rpt setup file.

setedit simulink-dynamic.rpt

The report is for the slrgex_vdp model.

Now that the model is open and the Gain parameter is set, use the Model Simulation component to
simulate the slrgex_vdp model.

1 In the Outline pane on the left, select the then component under the if (okSetValue)
component.

2 In the Library pane, under the Simulink category, double-click Model Simulation. In the
Outline pane on the left, this component is renamed Simulate model.

 Create a Simulink Report Generator Report Interactively

4-73

3 In the Properties pane on the right:

a Clear the Use model's workspace I/O variable names check box.
b In the Time text box, enter dynamicT.
c In the States text box, enter dynamicX.
d In the Output text box, enter dynamicY.

The Properties pane on the right looks as follows.

4 Creating Simulink Reports

4-74

4 In the Outline pane on the left, select the Simulate model component.
5 In the Library pane in the middle:

a Scroll down to the Simulink Blocks category.
b Double-click Scope Snapshot to add it as a sibling of the Simulink Model component.

This component captures the scope for each iteration.

 Create a Simulink Report Generator Report Interactively

4-75

6 In the Properties pane on the right:

a In the Paper orientation selection list, select Portrait.
b For the Image size, enter [5 4].
c In the Scaling selection list, select Zoom.
d Enter 75 for the % value.

7 Save the report setup file.
8 To test to see if the signal data falls within a specified range, add another Logical If component:

a In the Outline pane on the left, select the Scope Snapshot component.
b In the Library pane in the middle, scroll up to the Logical and Flow Control category.
c Double-click the Logical If component.

9 To test the signal data, replace true in the Test expression text box with the following in the
Properties pane on the right:

max(dynamicX(:,2))>testMin & max(dynamicX(:,2))<testMax
10 Save the report.

The Outline pane looks as follows:

4 Creating Simulink Reports

4-76

11 If this condition is true, the signal data falls within the desired range. Add a Paragraph
component to print information about the signal data in the report.

a In the Outline pane on the left, select the if component you just added.
b In the Library pane in the middle, under the Formatting category, double-click Paragraph

so that it becomes a child of the if component.

c In the Properties pane on the right:

i From the Title Options selection list, select Custom title.
ii Type Success in the text box.
iii Enter the following text in the Paragraph text text box.

The conditioned signal has a maximum value
of %<max(dynamicX(:,2))>, which lies in the
desired range of greater than %<testMin> and
less than %<testMax>.

12 To save the success values to insert into a table at the end of the iterations, use an Evaluate
MATLAB Expression component.

 Create a Simulink Report Generator Report Interactively

4-77

a In the Outline pane on the left, select the Paragraph component.
b In the Library pane in the middle, under the MATLAB category, double-click Evaluate

MATLAB Expression.

An unintended result occurs: the new component is a child of the Paragraph component.

c To make the new component a sibling of the Paragraph component, in the Outline pane on
the left, select the Eval component, and then Click the left arrow on the toolbar. The Eval
component becomes a sibling of the Paragraph component.

13 In the Properties pane on the right, for the Eval component:

a Clear the Insert MATLAB expression in report and Display command window output
in report check boxes.

b In the Expression to evaluate in the base workspace text box, enter the following to save
the desired signal values in the expOkValues array:

expOkValues=[expOkValues;...
 {Iteration_Value,max(dynamicX(:,2))}];

c Make sure you select Evaluate this expression if there is an error. Insert the following
text in the text box:

disp(['Error during eval: ', evalException.message])
14 Save the report setup file.

Create a Post-Test Analysis Section

Note This section builds on the previous tasks. To see the completed report setup file, open the
simulink-dynamic.rpt setup file.

setedit simulink-dynamic.rpt

The report is for the slrgex_vdp model.

Now that you have collected all the desired values, create the post-test analysis section by creating a
table and inserting it into your report at the end of this chapter.

1 In the Outline pane on the left, select the Model Loop Chapter component.
2 In the Library pane in the middle, under the Formatting category, double-click Chapter/

Subsection.

The new section appears at the beginning of the chapter.

4 Creating Simulink Reports

4-78

Click the down arrow three times so Section 1 moves to the end of the Model Loop Chapter
component.

 Create a Simulink Report Generator Report Interactively

4-79

3 In the Properties pane on the right:

a Select Custom in the Title selection list.
b Enter Post-Test Analysis in the text box.

4 In the Outline pane on the left, select the new Section 1 component.
5 In the Library pane in the middle, under the Formatting category, double-click Paragraph. Do

not change its properties.
6 To check whether there are any signal values within the desired range, check the array

expOkValues with a Logical If component. If expOkValues is empty, there are no signal values
in the desired range. Report the result of this check.

a In the Outline pane on the left, select the Paragraph component and add a Logical If child
component.

b In the Properties pane on the right, enter the expression to evaluate in the Test expression
text box:

~isempty(expOkValues)

This expression evaluates to 0 (false) if expOkValues is empty; otherwise, it evaluates to 1
(true).

c In the Outline pane on the left, select the if (~isempty(expOkValue)) component and add
the Logical Else component as a child.

d Select the if(~isempty(expOkValue)) component again and add the Logical Then
component as a child.

The two components are siblings in the Outline pane on the left.

4 Creating Simulink Reports

4-80

7 Save the report setup file.
8 Now, insert report components to handle the case where expOkValues is empty; that is, where

no signal values fall within the designated range.

a In the Outline pane on the left, select the else component.
b In the Library pane in the middle, double-click the Text component to add it as a child of the

else component.
c In the Properties pane on the right, in the Text to include in report text box, enter the

following:

None of the selected iteration values had
a maximum signal value between %<testMin> and %<testMax>.

9 Now handle the case where expOkValues is not empty and you want to insert a table of the
acceptable signal values.

a In the Outline pane on the left, select the then component.
b Add a Text component as a child to the then component.
c In the Properties pane on the right, in the Text to include in report text box, enter the

following text.

%<size(expOkValues, 1)> values for %<expBlock> were
found that resulted in a maximum signal value greater
than %<testMin> but less than %<testMax>. The following
table shows those values and their resulting signal maximum.

d In the Outline pane on the left, select the Text component under the then component of the
if (~isempty(expOkValues)) component.

10 To create an array for use when formatting the table, use the Evaluate MATLAB Expression
component.

a In the Library pane in the middle, double-click Evaluate MATLAB Expression.
b In the Properties pane on the right:

i Clear the Insert MATLAB expression in report and Display command window
output in report check boxes.

ii The next component of the report uses the strings Mu Value and Signal Maximum as
table header values. Add the strings to the front of the expOkValues cell array by
entering the following text into the Expression to evaluate in the base workspace
text box:

expOkValues=[{'Mu Value','Signal Maximum'} expOkValues];
iii Make sure you select the Evaluate this expression if there is an error check box.

Enter the following text into the text box:

disp(['Error during eval: ', evalExpression.message])

 Create a Simulink Report Generator Report Interactively

4-81

11 In the Outline pane on the left, select the Eval component.
12 In the Library pane in the middle, under the Formatting category, double-click the Array-Based

Table component so it becomes a sibling of the Text and Eval components.
13 In the Properties pane on the right:

a In the Workspace variable name text box, enter expOkValues. The Simulink Report
Generator software uses the contents of expOkValues to construct the table.

b In the Table title text box, enter Valid Iteration Values.
14 Save the report setup file.

The Outline pane on the left looks as follows.

4 Creating Simulink Reports

4-82

Generate the Report
To generate the report, click the Report icon on the toolbar. The following occurs:

1 A Message List window appears, displaying informational and error messages as the report is
processed. Specify the level of detail you would like the Message List window to display while the
report is being generated. Options range from 0 (least detail) to 6 (most detail). Click the
selection list located under the title bar of the Message List window to choose an option.

Message level 3 (Important messages) is used for the remainder of this example.

 Create a Simulink Report Generator Report Interactively

4-83

2 The slrgex_vdp model appears. You can see each time it is simulated.
3 The scope window appears. The scope graph changes each time the parameter value changes.
4 Each component of the report is highlighted as it executes, in the Outline pane on the left in the

Report Explorer window.

When the report generation is complete, the report opens.

4 Creating Simulink Reports

4-84

 Create a Simulink Report Generator Report Interactively

4-85

Generate a Report Associated with a Model
You can associate a report with your model. By associating a report with a model, you can use a script
to generate the report without specifying the name of the report. You can change the association
without modifying the script.

Associating a report with a model sets the model parameter ReportName to the name of the report.
Each model can have only one report associated with it. You can associate the same report with more
than one model.

1 Open the model you want to associate with a report.
2 In the Report Explorer, from the hierarchy view, select Report Generator. The library pane lists

your reports.
3 Select the report you want to associate with your model.
4 In the properties pane, under Simulink, click Associate report with Simulink system. The

report and model names are part of the button label.

5 Save the model.
6 Create a script to generate the report using report. Make sure the model and report template

are on the MATLAB path when you run the script.

load_system('myModel')
report(get_param('myModel','ReportName'))
bdclose('myModel')

You can clear the association clicking Un-associate Simulink system.

See Also
report

Related Examples
• “Select Report Generation Options”

4 Creating Simulink Reports

4-86

Logical and Looping Components
Logical and looping components execute conditionally, determining when a child component executes
or how many times a child component executes.

A looping component runs its child components a specified number of times. There are several
looping components, such as logical loops, Handle Graphics loops, and model and chart loops. For
model and chart loops, you can control aspects such as the order in which the report sorts blocks.

For an example that uses loop components, see “Edit Figure Loop Components”.

You can use loop context functions with loop components. For details, see:

• “Filter with Loop Context Functions” on page 4-88
• “Loop Context Functions” on page 4-90

 Logical and Looping Components

4-87

Filter with Loop Context Functions
In this section...
“Create and Save the Setup File” on page 4-88
“Add Components” on page 4-88
“Run the Report” on page 4-89

Use loop context functions to filter the modeling elements to report on and to perform special
reporting on specific elements.

In the following example, in a Block Loop component, you use RptgenSL.getReportedBlock in a
Logical If component to report on targeted blocks within a Block Loop component.

For a summary of loop context functions, see “Loop Context Functions” on page 4-90.

Create and Save the Setup File
1 Open the f14 model.
2 At the MATLAB command prompt, enter:

report
3 In the Report Explorer, select File > New.
4 In the Properties pane, set Directory to Present working directory.
5 Save the setup file as inport_outport.rpt.

Add Components
Add these components to the report, in order.

From this Library
Folder

Add this Component Set this Property

Simulink Model Loop N/A
Formatting Chapter Title to Inport Blocks
Simulink Block Loop N/A
Logical and Flow
Control

Logical If Test Expression to

strcmp(get_param...
(RptgenSL.getReportedBlock,'BlockType'),...
'Inport')

Simulink Simulink Property Table N/A

The report setup file looks like this:

4 Creating Simulink Reports

4-88

Run the Report
1 Select inport_outport.rpt.
2 From the context menu, select Report.

The report includes a chapter with properties for the Inport blocks only.

If you wish, create a second chapter that reports on Outport blocks only, as shown below.

 Filter with Loop Context Functions

4-89

Loop Context Functions
In this section...
“For Simulink Modeling Elements” on page 4-90
“For Stateflow Modeling Elements” on page 4-90

You can use these loop context functions in similar ways as shown in “Filter with Loop Context
Functions” on page 4-88.

For Simulink Modeling Elements
Modeling Element Looping Component Function
Simulink modeling elements
Block Block Loop RptgenSL.getReportedBlock
Signal Signal Loop RptgenSL.getReportedSignal
System System Loop RptgenSL.getReportedSystem
Model Model Loop RptgenSL.getReportedModel

For Stateflow Modeling Elements
Modeling Element Looping Component Function
Object Object Loop RptgenSF.getReportedObject
State State Loop RptgenSF.getReportedState
Chart Chart Loop RptgenSF.getReportedChart

4 Creating Simulink Reports

4-90

Export Simulink Models to Web Views

5

Web Views

What Is a Web View?
A Web view is an interactive rendition of a model that you can view in a Web browser. You can use
Web views to navigate hierarchically to specific subsystems and see properties of blocks and signals.
Web views provide a simple way to interactively explore a model. For example, you can view block
parameter values without opening a block parameter dialog box.

Use Web views to share models with people who do not have Simulink installed.

You can save Web views of a model over time, creating snapshots of the model as it changes during
the development process.

System Requirements
Although you use Simulink Report Generator software to create Web views, you can display a Web
view in a browser, even if you do not have Simulink Report Generator installed.

By default, when you export a Web view, that Web view automatically displays in your default Web
browser. Web views require a Web browser that supports SVG natively.

Web View Files
By default, exporting a Web view creates a zip file that includes the Web view HTML file, as well as
files that support Web view display. Supporting files include files include .svg and .png files. Zip file
packaging compresses the files and consolidates the Web view and supporting files into one zip file.

You can choose to export the Web view files as the Web view HTML file and the supporting files, in a
folder, without being zipped. You can open the Web view HTML file directly, without having to open a
non-zipped file. You can also choose to export the Web view files as both a zip file and as non-zipped
files.

The default name of the zip file or folder that contains the non-zipped Web view files is the name of
the model that contains the systems to export. You can specify a different file or folder name.

The default location for storing Web view files is the MATLAB current folder. You can choose a
different folder.

If you send Web view files to someone else, consider whether you need to explain how to access the
Web view file.

See Also

Related Examples
• “Export Models to Web View Files” on page 5-4
• “Display and Navigate a Web View” on page 5-5
• “Create and Use a Web View of a Model” on page 5-12

5 Export Simulink Models to Web Views

5-2

• “Include Model Requirements and Coverage Data in a Web View” on page 5-18

 Web Views

5-3

Export Models to Web View Files
To export a model to a web view file:

1 Open the model to export.
2 In the Simulink Toolstrip, on the Simulation tab, in the File section, click Save . Under

Export Model To, select Web View.
3 Under Systems to Export, select the levels of the model to export, in relationship to the system

currently displayed or chart currently selected in the Simulink Editor.
4 For the systems in the levels that you are exporting, under Include Options, select any kinds of

systems you want the web view user to be able to navigate below the Subsystem or Model block,
to the underlying blocks or models.

If you select more than one kind of system, the criteria for exporting information for interacting
with the contents of the systems are applied downward through the model hierarchy. For
example, if you did not select Referenced Models when you exported the model, regardless of
how you set the Library Links option, in the web view you cannot interact with a library link
block that is inside of a referenced model.

5 Under Systems to Exclude, select any systems that you do not want to export. To select multiple
systems, press the Ctrl key and select systems.

6 To avoid overwriting existing exported web view packages, select If package exists, increment
name to prevent overwriting.

7 In Package Type, specify whether you want to package the web view as a zipped file (the default
packaging). In Package name, you can specify a name for the zip file or for the folder for the
web view files.

8 Select optional views.

• If you have Simulink Coverage™ installed, on the Optional Views tab, you can select
Include Coverage view.

• If you have Simulink Requirements on the Optional Views tab, you can select Include
Requirements view.

9 Click Export.

See Also
Functions
slwebview

Related Examples
• “Display and Navigate a Web View” on page 5-5
• “Create and Use a Web View of a Model” on page 5-12
• “Include Model Requirements and Coverage Data in a Web View” on page 5-18
• “Web Views” on page 5-2
• “Web View Files” on page 5-2

5 Export Simulink Models to Web Views

5-4

Display and Navigate a Web View
In this section...
“Display a Web View When You Export It” on page 5-5
“Open a Web View File in a Web Browser” on page 5-5
“View Contents of a System” on page 5-7
“View Block Parameters and Signal Properties” on page 5-8
“Access Optional Web View Information” on page 5-8

Display a Web View When You Export It
When you export a Web view using the Web View dialog box or from the Report Explorer Web View
pane, the Web view appears in your system web browser.

Open a Web View File in a Web Browser
To open a Web view file to display in a web browser, navigate to the folder that contains the Web view
files, then open the webview.html file. For details about file packaging and location, see “Web View
Files” on page 5-2.

Supported browsers include:

• Microsoft Edge®

 Display and Navigate a Web View

5-5

• Internet Explorer® 11
• Google Chrome™
• Firefox®

• Safari

Before you can open a Web view file in a Microsoft Edge or Google Chrome browser, you must set up
the browser to allow the Web view file to access files and subfolders in the Web views folder. The
setup for a Google Chrome browser depends on the platform that you use.

Open a Web View in a Microsoft Edge Browser

Create a shortcut that opens Microsoft Edge with the --allow-file-access-from-files flag.

1 Click the Start key and type Microsoft Edge.
2 In the search results, right-click Microsoft Edge and select Open file location.
3 From the list of applications, drag Microsoft Edge to your desktop.
4 Right-click the shortcut and select Properties.
5 Append --allow-file-access-from-files to the contents of the Target box. Be sure to use

two hyphens at the beginning and to put a space between the existing content and the content
that you append. Click OK.

To open a Web View file:

1 Close all open Microsoft Edge browsers.
2 Open a Microsoft Edge browser by using the shortcut that includes the --allow-file-

access-from-files flag.
3 Open the Web view file in the open Microsoft Edge browser. For example, drag the file to the

browser or right-click the file and select Open with > Microsoft Edge.

Open a Web View in a Google Chrome Browser on a Windows Platform

Create a shortcut that opens Chrome™ with the --allow-file-access-from-files flag. For
example, on Windows 10:

1 Click the Start key and type Chrome.
2 In the search results, right-click Chrome and select Open file location.
3 From the list of applications, drag Chrome to your desktop.
4 Right-click the shortcut and select Properties.
5 Append --allow-file-access-from-files to the contents of the Target box. Be sure to use

two hyphens at the beginning and to put a space between the existing content and the content
that you append. Click OK.

To open a Web View file:

1 Close all open Chrome browsers.
2 Open a Chrome browser by using the shortcut that includes the --allow-file-access-from-

files flag.
3 Open the Web view file in the open Chrome browser. For example, drag the file to the browser or

right-click the file and select Open with > Google Chrome.

5 Export Simulink Models to Web Views

5-6

Open a Web View in a Google Chrome Browser on a Macintosh Platform

1 Run Terminal. You can find it using Spotlight, in Applications/Utilities.
2 Enter the following text:

open/Applications Google\Chrome.app --allow-file-access-from-files

Open a Web View in a Google Chrome Browser on a Linux Platform

1 Run terminal.
2 Enter the following text:

./chromium-browser --allow-file-access-from-files

View Contents of a System
To see a thumbnail of the contents of all of systems in the Web view, click the View All tab.

To view the contents of a specific system, use one of these approaches:

• In the model viewer, double-click the system.
• In the model browser, select a system. To expose this pane, click Hide/Show Model Browser .

 Display and Navigate a Web View

5-7

• Click the View All tab and click the thumbnail of a system.

To open a system in a separate tab, press CTRL and click the system.

View Block Parameters and Signal Properties
Click a block or signal in the model to see its parameters or properties in the Object Inspector pane.

Access Optional Web View Information
To view the model coverage optional Web view information in a Web view, you must have Simulink
Coverage installed. To view the requirements optional Web view information in a Web view, you must
have Simulink Requirements installed. To access the information, click a highlighted block (for
example, blocks with an orange border have requirements information). The information for that
block appears in the Informer pane below the model.

See Also
Functions
slwebview

Related Examples
• “Create and Use a Web View of a Model” on page 5-12
• “Web Views” on page 5-2
• “Web View Files” on page 5-2
• “Include Model Requirements and Coverage Data in a Web View” on page 5-18

5 Export Simulink Models to Web Views

5-8

Search a Web View
In this section...
“Perform a Search” on page 5-9
“Sort Search Results” on page 5-10
“Navigate Between Search Results and Model Elements” on page 5-11

Perform a Search
1

In a Web View, at the top of the displayed tab, click the search button .
2 In the search box, enter the search term.

Search strings are case-insensitive. The search treats the string as a partial string.
3 To specify search criteria, click the search criteria button and select the types of model element

you want to search in.

4 Press Enter.

The elements of the model that the search returns appear highlighted. The search results include the
name and parent for each returned element.

 Search a Web View

5-9

Sort Search Results
You can sort the search results in alphabetical order. In the search results table, click the Name or
Parent column.

5 Export Simulink Models to Web Views

5-10

Navigate Between Search Results and Model Elements
To see the corresponding search result for a highlighted model element, click the element.

To highlight the model element for a search result, click the search result.

The Object Inspector pane to the right of the model updates to reflect the selected model element
or search result.

 Search a Web View

5-11

Create and Use a Web View of a Model
In this section...
“Set Up the Browser” on page 5-12
“Open the Model” on page 5-12
“Create a Folder for the Web View Files” on page 5-12
“Export the Model to a Web View” on page 5-12
“Navigate a Web View” on page 5-13
“Navigate the Web View of the slrgex_fuelsys Model” on page 5-14
“Display Parameters and Properties of Blocks and Signals” on page 5-16
“Move and Zoom in on Diagrams in the Model Viewer Pane” on page 5-16
“Open the Web View Outside of MATLAB” on page 5-16

This example shows how to export a Simulink model to a web view. You can view, navigate, and share
a web view without a Simulink license.

This example creates a web view from the slrgex_fuelsys model.

Set Up the Browser
Before you can open a web view file in Microsoft Edge or Google Chrome, you must set up the
browser to allow the web view file to access files and subfolders in the web views folder. See “Open a
Web View File in a Web Browser” on page 5-5.

Open the Model
Open the slrgex_fuelsys model.

open_system("slrgex_fuelsys");

Create a Folder for the Web View Files
Create a writable folder called fuelsys_webview so that you can export the model web view files to
this folder.

Export the Model to a Web View
1 In Simulink, on the Simulation tab, in the File section, click Save . Under Export Model To,

select Web View.

The Web View dialog box opens.
2 To export the whole model, under Systems to Export, select Entire Model.
3 To enable users of the web view to interact with reference blocks, under Include Options, select

Referenced Models.
4 To enable users of the web view to interact with masked blocks, select Masked Subsystems.

5 Export Simulink Models to Web Views

5-12

5 Leave the default Package name value, slrgex_fuelsys.
6 In the Folder text box, enter the path of the fuelsys_webview folder that you created.

If you do not specify a folder, by default the Folder text box contains the path of the folder where
you previously exported a web view of the model or the current MATLAB folder.

7 Select the If package exists, increment name to prevent overwriting check box. Selecting
this option ensures that you do not overwrite the web view files if you export multiple web views
from the same model. The web view dialog box now looks like this:

8 Click Export.

The web view exports and opens in the system browser.

Navigate a Web View
The web view consists of:

• The model viewer pane, which displays the model or selected system. By default, this pane
displays the model or top-level system that you exported.

• The View All tab, which displays diagrams of all the systems.
• The model browser pane, which displays a hierarchical tree of the systems. By default, the model

browser pane is hidden. To open it, click the Hide/Show Model Browser button in the lower-
left corner of the model viewer pane. By default, the model browser displays the top-level systems.
Expand the tree nodes to see all systems in the hierarchy.

 Create and Use a Web View of a Model

5-13

• The object inspector pane, which lists the parameters or properties of models, systems, blocks or
signals.

• The explorer bar, which displays the path of the displayed system in the model.

You can display a system by selecting the system in the model browser, double-clicking the system in
the model viewer pane, or clicking the diagram of the system on the View All tab.

Navigate the Web View of the slrgex_fuelsys Model
1 In the display pane, click View All.

The tab displays diagrams of all the systems in the slrgex_fuelsys model.

5 Export Simulink Models to Web Views

5-14

2 Click the third diagram in the top row, which is the diagram of the Engine Gas Dynamics
system.

The model viewer pane displays the Engine Gas Dynamics system.
3 Return to the top level of the model by clicking slrgex_fuelsys in the explorer bar.
4 In the model viewer pane, double-click the To Controller system.

The model viewer pane displays the To Controller system, which is a masked SubSystem. You
can interact with the To Controller subsystem because you included masked subsystems
when you exported the model.

5 If the model browser is not open, click the Hide/Show Model Browser button in the lower-left
corner of the model viewer pane.

6 Expand the Engine Gas Dynamics node and click the Mixing and Combustion system.

The Mixing and Combustion system displays in the model viewer pane.
7 Return to the top level of the model by clicking slrgex_fuelsys in the explorer bar.
8 In the model viewer pane, double-click the fuel-rate control system.

The model viewer pane displays the fuel-rate control system, which is a model reference.
You can interact with the fuel-rate control system because you included referenced models
when you exported the model.

 Create and Use a Web View of a Model

5-15

Display Parameters and Properties of Blocks and Signals
1 Return to the top level of the model by clicking slrgex_fuelsys in the explorer bar.
2 In the model browser pane, select the To Plant system.
3 Click the Rate Transition block to view the block parameter values.

4 Click the input signal of the Outport block to display the signal properties.

Move and Zoom in on Diagrams in the Model Viewer Pane
To move the diagram in the model viewer pane, click and drag the mouse scroll wheel.

To zoom in and out on the diagram, use the mouse scroll wheel.

Open the Web View Outside of MATLAB
By default, exporting a web view creates a ZIP file that includes the web view HTML file and files that
support the web view display. To open the web view outside of MATLAB:

5 Export Simulink Models to Web Views

5-16

1 Navigate to the folder that contains the ZIP file.
2 Extract the slrgex_fuelsys_webview ZIP file .
3 Open the webview.html file in a browser.

See “Web Views” on page 5-2 and “Open a Web View File in a Web Browser” on page 5-5.

See Also

Related Examples
• “Web Views” on page 5-2
• “Include Model Requirements and Coverage Data in a Web View” on page 5-18
• “Export Models to Web View Files” on page 5-4
• “Display and Navigate a Web View” on page 5-5

 Create and Use a Web View of a Model

5-17

Include Model Requirements and Coverage Data in a Web View
You can include these optional views in a model web view:

• Model requirements (requires Simulink Requirements)
• Model coverage (requires Simulink Coverage)

Prepare the Model for an Optional Web View
Before you can include an optional view in a web view, the model must contain requirements or
coverage data:

• To add requirements to a model, see “Requirements Definition” (Simulink Requirements).
• To add coverage data to a model, simulate the model with coverage enabled. For a web view to

include the coverage data, you must also select Save last run in workspace variable in the
Coverage > Results pane of the Configuration Parameters dialog box. See “Specify Code
Coverage Options” (Simulink Coverage).

Add Optional Views to a Web View Using the Web View Dialog Box
If you export a model web view from the Simulink Toolstrip, to include requirements or coverage
data:

1 Open the Web View dialog box. In the Simulink Toolstrip, on the Simulation tab, in the File
section, click Save . Under Export Model To, select Web View.

2 Open the Optional Views tab and select the views. By default, both the requirements and
coverage views are selected.

3 Click Export.

Add Optional Web Views Using slwebview
If you export a web view by using slwebview, specify the optional views by using the
'OptionalViews' argument. Specify one or both of these values in a cell array:

• 'requirements'
• 'coverage'

For example:

htmlFileName = slwebview(gcs,'OptionalViews', {'requirements' 'coverage'});

5 Export Simulink Models to Web Views

5-18

Open an Optional Web View
Open the web view in a web browser. See “Display and Navigate a Web View” on page 5-5. In the
lower-left palette of the web view, there is a button for each optional view that you selected.

•
To access the requirements view, click the button. This view highlights model elements that
have requirements and outlines model elements that contain elements that have requirements.

• To access the coverage data view, click the button. Click model elements for coverage
information.

See Also
Functions
slwebview

Related Examples
• “Export Models to Web View Files” on page 5-4
• “Display and Navigate a Web View” on page 5-5
• “Introduction to Simulink Requirements” (Simulink Requirements)
• “Model Coverage” (Simulink Coverage)

 Include Model Requirements and Coverage Data in a Web View

5-19

Embedded Web View Reports

In this section...
“What Is Embedded Web View?” on page 5-20
“Navigating an Embedded Web View Report” on page 5-21
“Embedded Web View Packaging” on page 5-23
“View Embedded Web View Reports” on page 5-23

What Is Embedded Web View?
Embedded Web View is a MATLAB application programming interface (API) that allows you to create
HTML reports containing “Web Views” on page 5-2. Embedded Web View lets you generate compact
and navigable reports from Simulink models. For example, the following image shows a control
system calibration guide generated by a MATLAB program based on Embedded Web View.

This calibration guide comprises three hyperlinked panes:

• Left pane — Calibration guide table of contents
• Center pane — Calibration guide content
• Right pane — web view of the Simulink model used to create the control system

Use the MATLAB Report Generator DOM and Report APIs and the Simulink Report Generator Report
APIs to generate the calibration guide content. Use the Embedded Web View API to create the report.
The report is a user interface with guide content, an embedded Web View, and hyperlinks between
the Web View and the guide report text. The resulting guide runs in any standard browser without
requiring either MATLAB or Simulink.

5 Export Simulink Models to Web Views

5-20

Navigating an Embedded Web View Report
The Embedded Web View API facilitates report navigation by letting you create two-way hyperlinks
between report content and the embedded Web View. The hyperlinks are illustrated in the following
calibration guide example.

Navigate Via a Table of Contents

The Embedded Web View API creates a table of contents (TOC) based on your report section
headings. Clicking a TOC heading entry displays the corresponding report section in the contents
pane. It also displays and flashes the corresponding model element. The linked model block in this
calibration guide example is shown highlighted in yellow in the Web View pane.

Navigate Via Contents

This calibration guide has hyperlinks from any text element in the content to any model element in
the Web View pane. Clicking the text element in the contents displays and flashes the corresponding
model element. The linked model block in this calibration report example is shown highlighted in
yellow in the Web View pane.

 Embedded Web View Reports

5-21

Navigate Via Web View

This calibration guide has hyperlinks from any element in the Web View pane to any location in the
report content pane. Clicking the model element displays the corresponding location in the content
pane as shown highlighted in this calibration guide example.

5 Export Simulink Models to Web Views

5-22

Embedded Web View Packaging
The Embedded Web View API generates a report as a package of HTML, image, style sheet,
JavaScript®, and JavaScript Object Notation (JSON) files organized into folders. By default, the API
produces both zipped and unzipped versions of a report package in the current MATLAB folder.

View Embedded Web View Reports
If MATLAB Report Generator is installed on your system, you can use the report generator rptview
function to view a zipped or unzipped Embedded Web View.

To view an Embedded Web View report on systems that do not have MATLAB installed,

1 Unzip the report in an empty, writable folder on your system. This step creates a file named
webview.html in the folder and a subfolder containing supporting files.

2 Open webview.html in a browser to view the report.

See Also

Related Examples
• “Create an Embedded Web View Report Generator” on page 5-24

 Embedded Web View Reports

5-23

Create an Embedded Web View Report Generator
To create a MATLAB program that generates an Embedded Web View report:

1 Create a MATLAB class that defines a report object that generates a Web View report. See
“Create an Embedded Web View Report Generator Class” on page 5-24 for a summary of the
steps to create and define the class.

2 To generate the report, use this class in a MATLAB program. See “Generate an Embedded Web
View Report” on page 5-35.

For general information and how to view and navigate a generated report, see “Embedded Web View
Reports” on page 5-20.

Create an Embedded Web View Report Generator Class
To create an Embedded Web View report class, use this workflow:

1 Open the MATLAB editor.
2 To create a default class definition file, select New > Class.
3 Replace the default content of the new class definition file with this Embedded Web View class

definition template:
classdef REPORT_GENERATOR < slreportgen.webview.EmbeddedWebViewDocument
 methods

 % Report generator constructor
 function rptev = REPORT_GENERATOR(reportName,modelName)
 rptev@slreportgen.webview.EmbeddedWebViewDocument(...
 reportName,modelName);
 end

 % Report content generator
 function fillContent(rptev)

 end
 end
end

4 Replace the placeholder, REPORT_GENERATOR, with the name of your report generator.
5 To save your new class definition file using the name you used to replace the

REPORT_GENERATOR placeholder, select Editor > Save As.
6 To specify the export options and warning suppression option for your report generator, edit the

template constructor. See “Specify Export Options for Embedded Web View Report” on page 5-
25 and “Suppress Link Warning Messages for Embedded Web View Report” on page 5-34,
respectively.

7 To include the report content, table of contents, model, and hyperlinks to embed in your report,
edit the content generator (fillContent) function. These topics describe how to add content to
the Embedded Web View report generator. You can perform these tasks in any order.

• “Specify Document Content for Embedded Web View Report” on page 5-26
• “Generate Table of Contents for Embedded Web View Report” on page 5-27
• “Get Model Objects for Embedded Web View Report” on page 5-28
• “Create Hyperlinks for Embedded Web View Report” on page 5-29

8 Save your changes to the new class definition file.

5 Export Simulink Models to Web Views

5-24

Specify Export Options for Embedded Web View Report
The slreportgen.webview.EmbeddedWebViewDocument base class of your report generator
exports and embeds a Web View of the model specified by the constructor in the generated report. By
default the base class does not export block diagrams referenced by the top-level model or block
diagrams of masked subsystems. To export these types of block diagrams, you must use an
ExportOptions property inherited from the base class of your generator. You use this property in
the constructor of the generator.

For example, the following constructor includes the ExportOptions property. This property exports
the block diagrams of masked subsystems and models and library blocks referenced by the exported
model.

function rptvar = SystemDesignVariables...
 (reportName, modelName)
 rptvar@slreportgen.webview.EmbeddedWebViewDocument...
 (reportName,modelName);
 rptvarn.ExportOptions.IncludeMaskedSubsystems = true;
 rptvar.ExportOptions.IncludeSimulinkLibraryLinks = true;
 rptvar.ExportOptions.IncludeReferencedModels = true;
end

If you export referenced block diagrams, to view them, click the block icon that references the
diagram in the Web View. You can also create hyperlinks from the generated report content to these
block diagrams.

For other tasks to create your Embedded Web View generator, see

• “Specify Document Content for Embedded Web View Report” on page 5-26
• “Generate Table of Contents for Embedded Web View Report” on page 5-27
• “Get Model Objects for Embedded Web View Report” on page 5-28
• “Create Hyperlinks for Embedded Web View Report” on page 5-29
• “Suppress Link Warning Messages for Embedded Web View Report” on page 5-34

To generate the Embedded Web View report, see “Generate an Embedded Web View Report” on page
5-35.

 Specify Export Options for Embedded Web View Report

5-25

Specify Document Content for Embedded Web View Report
The fillContent method fills the document pane of the report that it generates with content
specified by DOM and Report API objects. See “Report Generator Creation”. The report generator
inherits an add method from its slreportgen.webview.EmbeddedWebViewDocument base class.
Use the add method in the fillContent method of your report generator. Each call to the add
method adds its content after the previously added content. The fillContent method can create a
document of any length and content by repeated calls to the add method.

For example, this fillContent method begins by creating a report title.

function fillContent(rpt)
 import mlreportgen.dom.*
 import mlreportgen.report.*
 add(rpt, TitlePage("Title", "System Design Variable Report"));
 ...
end

For other tasks to create your Embedded Web View generator, see:

• “Specify Export Options for Embedded Web View Report” on page 5-25
• “Generate Table of Contents for Embedded Web View Report” on page 5-27
• “Get Model Objects for Embedded Web View Report” on page 5-28
• “Create Hyperlinks for Embedded Web View Report” on page 5-29
• “Suppress Link Warning Messages for Embedded Web View Report” on page 5-34

To generate the Embedded Web View report, see “Generate an Embedded Web View Report” on page
5-35.

5 Export Simulink Models to Web Views

5-26

Generate Table of Contents for Embedded Web View Report
The slreportgen.webview.EmbeddedWebViewDocument base class of an Embedded Web View
report generator embeds JavaScript in the generated Embedded Web View reports. In addition to
generating other portions of the report, the JavaScript generates a table of contents from the
document section headings. When you open the report in a web browser, the hyperlinked table of
contents appears.

To use this feature, your report generator fillContent method must use Report API Chapter or
Section objects, or DOM API Heading objects to begin the sections and subsections of the report.
For example:

function fillContent(rpt)

import mlreportgen.dom.*
import mlreportgen.report.*

model = getExportModels(rpt);
model= model{1};
add(rpt, TitlePage("Title", [model " Report"], "Author",""));
finder = slreportgen.finder.ModelVariableFinder(model);

% Create a Variables Chapter
ch = Chapter("Variables");

while hasNext(finder)
 result = next(finder);
 % Create a section for the variable
 s = Section(result.Name);

 reporter = getReporter(result);
 add(s, reporter);

 % Add this section to the chapter
 add(ch, s);
end

% Add the chapter to the report
add(rpt, ch);
end

For other tasks to create your Embedded Web View generator, see:

• “Specify Export Options for Embedded Web View Report” on page 5-25
• “Specify Document Content for Embedded Web View Report” on page 5-26
• “Get Model Objects for Embedded Web View Report” on page 5-28
• “Create Hyperlinks for Embedded Web View Report” on page 5-29
• “Suppress Link Warning Messages for Embedded Web View Report” on page 5-34

To generate the Embedded Web View report, see “Generate an Embedded Web View Report” on page
5-35.

 Generate Table of Contents for Embedded Web View Report

5-27

Get Model Objects for Embedded Web View Report
The Embedded Web View report generator slreportgen.webview.EmbeddedWebViewDocument
base class provides a set of methods for finding model objects to export to the generated report. You
use these methods in the report generator fillContent method to obtain information about the
exported objects for the report document.

To find objects to export from the model, use these methods, which are inherited from the
slreportgen.webview.EmbeddedWebViewDocument base class of the report generator.

Method Purpose
getExportModels Get models to be exported to the report as Web

Views.
getExportDiagrams Get block diagrams to be exported to the report
getExportSimulinkSubSystems Get subsystem blocks to be exported to the report
getExportStateflowDiagrams Get Stateflow charts to be exported to the report
getExportStateflowCharts Get Stateflow chart elements to be exported in

this report

This sample code shows how to get a model to use as the Web View.

function fillContent(rpt)
 import mlreportgen.dom.*
 model = getExportModels(rpt);
 model = model{1};
 …
end

For other tasks to create your Embedded Web View generator, see:

• “Specify Export Options for Embedded Web View Report” on page 5-25
• “Specify Document Content for Embedded Web View Report” on page 5-26
• “Generate Table of Contents for Embedded Web View Report” on page 5-27
• “Create Hyperlinks for Embedded Web View Report” on page 5-29
• “Suppress Link Warning Messages for Embedded Web View Report” on page 5-34

To generate the Embedded Web View report, see “Generate an Embedded Web View Report” on page
5-35.

5 Export Simulink Models to Web Views

5-28

Create Hyperlinks for Embedded Web View Report
To create one-way and two-way hyperlinks between the document pane and the web view embedded
in the report, use these methods. These linking methods are inherited from the
slreportgen.webview.EmbeddedWebViewDocument base class of the report generator.

• createDiagramTwoWayLink — Create a two-way link between a document location and a
diagram in the embedded web view. Clicking a link created by this method in the document opens
the target diagram in the web view. Clicking in the diagram scrolls the document pane to the
target document location.

• createElementTwoWayLink — Create a two-way link between a document location and a
diagram element in the embedded web view. Clicking a link created by this method in a document
opens the diagram containing the model element and flashes the element. Clicking the element in
the diagram scrolls the document pane to the target document location.

• createDiagramLink — Creates a link from the document to a diagram in the embedded web
view.

• createElementLink — Creates a link from the document to an element of a block diagram in
the embedded web view.

In the following example class, ExampleWebView, the fillcontent method uses
createDiagramTwoWayLink and createElementTwoWayLink to create two-way links between the
document panel and the embedded web view in an embedded web view report. To create one-way
links from the document panel to the embedded web view, replace createDiagramTwoWayLink with
createDiagramLink and createElementTwoWayLink with createElementLink.

classdef ExampleWebView < slreportgen.webview.EmbeddedWebViewDocument

 methods
 function wvdoc = ExampleWebView(reportPath,modelName)
 % Invoke the EmbeddedWebViewDocument constructor, which
 % saves the report path and model name for use by the
 % report's fill methods.
 wvdoc@slreportgen.webview.EmbeddedWebViewDocument(reportPath,modelName);
 end

 function fillContent(wvdoc)
 % Fill the Content hole in the report template with design
 % variable information. You can use DOM or Report API methods
 % to create, format, add, and append content to this report.

 [~, handles] = getExportDiagrams(wvdoc);

 n = numel(handles);
 for i = 1:n
 diagHandle = handles{i};
 diagHeading = createDiagramTwoWayLink(wvdoc,diagHandle, ...
 mlreportgen.dom.Heading(2,get_param(diagHandle,'Name')));
 append(wvdoc,diagHeading);

 blockFinder = slreportgen.finder.BlockFinder(diagHandle);

 while hasNext(blockFinder)
 r = next(blockFinder);
 elemHandle = r.Object;

 Create Hyperlinks for Embedded Web View Report

5-29

 elemHeading = createElementTwoWayLink(wvdoc,elemHandle, ...
 mlreportgen.dom.Heading(3,get_param(elemHandle,'Name')));

 append(wvdoc,elemHeading);
 end

 end
 end
 end
end

This code creates an embedded web view report for the slrgex_vdp model using the
ExampleWebView class.

model = 'slrgex_vdp';
open_system(model);
wvdoc = ExampleWebView('myReport',model);
open(wvdoc);
fill(wvdoc);
close(wvdoc);
rptview(wvdoc);

Here is the report:

To use the links in the report:

1 Click a diagram name in the document pane, for example, More Info. The associated diagram
opens.

5 Export Simulink Models to Web Views

5-30

2 In the embedded web view, on the More Info tab, click slrgex_vdp.

The slrgex_vdp diagram opens and slrgex_vdp is highlighted briefly in the document pane.

 Create Hyperlinks for Embedded Web View Report

5-31

3 Click Square in the document pane, the Square block is highlighted in the embedded web view.

4 In the embedded web view, double-click the Mu block. The Mu link in the document pane is
highlighted briefly.

5 Export Simulink Models to Web Views

5-32

For other tasks to create your embedded web view generator, see:

• “Specify Export Options for Embedded Web View Report” on page 5-25
• “Specify Document Content for Embedded Web View Report” on page 5-26
• “Generate Table of Contents for Embedded Web View Report” on page 5-27
• “Get Model Objects for Embedded Web View Report” on page 5-28
• “Suppress Link Warning Messages for Embedded Web View Report” on page 5-34

To generate an embedded web view report, see “Generate an Embedded Web View Report” on page
5-35.

See Also
slreportgen.webview.EmbeddedWebViewDocument

More About
• “Embedded Web View Reports” on page 5-20

 Create Hyperlinks for Embedded Web View Report

5-33

Suppress Link Warning Messages for Embedded Web View
Report

By default, during report generation the slreportgen.webview.EmbeddedWebViewDocument
base class of the Embedded Web View report generator displays warning messages for invalid links.
These warnings appear if you include multiple links to an element in the Web View, although these
multiple links are permitted. If you do not want to display these warning messages, you can suppress
them. Set the ValidateLinksAndAnchors property, which is inherited from the base class, to
false in the constructor of the report generator. For example,

function rptvar = SystemDesignVariables(reportPath, modelName)
 rptvar@slreportgen.webview.EmbeddedWebViewDocument(reportPath, ...
 modelName);
 rptvar.ValidateLinksAndAnchors = false;
end

For other tasks to create your Embedded Web View generator, see:

• “Specify Export Options for Embedded Web View Report” on page 5-25
• “Specify Document Content for Embedded Web View Report” on page 5-26
• “Generate Table of Contents for Embedded Web View Report” on page 5-27
• “Get Model Objects for Embedded Web View Report” on page 5-28
• “Create Hyperlinks for Embedded Web View Report” on page 5-29

To generate the Embedded Web View report, see “Generate an Embedded Web View Report” on page
5-35.

5 Export Simulink Models to Web Views

5-34

Generate an Embedded Web View Report
To generate an embedded Web View report, create an instance of the class that defines the report
generator (see “Create an Embedded Web View Report Generator” on page 5-24). Then, use the fill
and close report generator methods.

For example, suppose that you want to create a report using the SystemDesignVariables class
example (see “Class Definition File for an Embedded Web View” on page 5-35). These commands
generate and display an instance of that report:

model = 'f14';
rptName = sprintf('%sVariables', model);
load_system(model);
rpt = SystemDesignVariables(rptName, model);
fill(rpt);
close(rpt);
close_system(model);
rptview(rptName);

The fill(rpt) command uses the fill method, which the report generator inherits from its base
class. This method embeds a Web View of the f14 model in the report. It also calls the fillContent
method of the report generator, which fills the report document pane with a report about the
variables used by the f14 model.

Here is part of the resulting Embedded Web View report:

For information on navigating to different parts of the report, see “Navigating an Embedded Web
View Report” on page 5-21.

Class Definition File for an Embedded Web View
This class generates a report for the workspace and data dictionary variables used by a specified
Simulink model.

 Generate an Embedded Web View Report

5-35

classdef SystemDesignVariables < slreportgen.webview.EmbeddedWebViewDocument
 %SystemDesignVariables Report on variables used by a Simulink model
 % Defines a class of report generators to produce HTML reports on
 % the workspace and data dictionary variables used by a Simulink
 % model. The generated report includes this information for
 % each variable:
 %
 % Value (if the value is a scalar, numeric value)
 % Data Type
 % Source (e.g, path of dictionary containing the variable)
 % Source Type (e.g., data dictionary or base workspace)
 % Users (path of blocks that use the variable)

 methods

 function rpt = SystemDesignVariables(reportPath, modelName)

 % Invoke the EmbeddedWebViewDocument constructor, which
 % saves the report path and model name for use by the
 % report's fill methods.
 rpt@slreportgen.webview.EmbeddedWebViewDocument(reportPath,...
 modelName);

 % Turn off duplicate link warnings to avoid warnings for
 % blocks that use multiple design variables.
 rpt.ValidateLinksAndAnchors = false;

 rpt.ExportOptions.IncludeMaskedSubsystems = true;
 rpt.ExportOptions.IncludeSimulinkLibraryLinks = true;
 rpt.ExportOptions.IncludeReferencedModels = true;
 end

 function fillContent(rpt)
 % Fill the Content hole in the report template with design
 % variable information. You can use DOM or Report API methods
 % to create, format, add, and append content to this report.

 %% Set up report
 % Allow use of unqualified names for DOM and Report objects,
 % such as Paragraph instead of mlreportgen.dom.Paragraph and
 % TitlePage instead of mlreportgen.report.TitlePage.
 import mlreportgen.dom.*
 import mlreportgen.report.*

 % Obtain model name, which was saved by the report
 % constructor. getExportedModels returns model names as a
 % cell array, in case a report uses multiple models.
 model = getExportModels(rpt);

 % Extract the model from the cell array. (This report uses
 % only one model.)
 model= model{1};

 % Add a title page to the report
 add(rpt, TitlePage("Title",[model " Report"],"Author",""));

 % Find variables used by the reported model
 finder = slreportgen.finder.ModelVariableFinder(model);

 % Create a Variables Chapter
 ch = Chapter("Variables");

 while hasNext(finder)
 result = next(finder);
 % Create a section for the variable
 s = Section(result.Name);

 % Add variable information to the section using
 % default reporter settings
 reporter = getReporter(result);
 add(s,reporter);

5 Export Simulink Models to Web Views

5-36

 % Add this section to the chapter
 add(ch,s);
 end

 % Add the chapter to the report
 add(rpt,ch);
 end
 end
end

To generate two-way links between design variable user paths and blocks in the Web View that use
the design variables, replace these lines of code:

% Add variable information to the section using
% default reporter settings
reporter = getReporter(result);
add(s,reporter);

with these lines of code:

% Create a Users list with links to the embedded model
usedByPara = Paragraph("Used By:");
usedByPara.Bold = true;
add(s, usedByPara);
users = result.Users;
nUsers = numel(users);
for u = 1:nUsers
 userLink = createElementTwoWayLink(rpt, ...
 users{u}, ...
 Paragraph(users{u}));
 add(s,userLink);
end

 Generate an Embedded Web View Report

5-37

Web View

Web View Export Dialog Box Overview
Use Web View dialog box to set export options, including:

• Systems to export (for example, the current system or current system and systems below)
• Whether to export information to support interacting with contents of referenced models, library

links, or masked subsystems
• Where to store the web view files
• How to package the web view files
• Capture and optional view information

To get help on an option

1 Right-click the option's text label.
2 Select What's This from the popup menu.

See Also

“Export Models to Web View Files” on page 5-4

Systems to Export
Select which Simulink systems or Stateflow charts to export.

Note The systems to export are relative to the system that is currently visible in the Simulink Editor
or Stateflow Editor.

Include Systems Option Value Meaning
Entire Model (Default) Export all Simulink systems or Stateflow charts in

the model
Current and below Export the system or Stateflow chart that is

displayed in the Simulink Editor or in the
Stateflow Editor and all subsystems or subcharts
that it contains

Current and above Export the displayed Simulink system or
Stateflow chart and all systems or charts that
contain it

Current Export only the Simulink system that is displayed
in the Simulink Editor or in the Stateflow Editor

5 Export Simulink Models to Web Views

5-38

Referenced Models
Export models referenced by the systems that you select to export. For example, if you select the
Entire Model option, any models referenced by a Model block the exported model.

Library Links
Export library blocks linked to from the systems that you select to export. For example, if you select
the Entire Model option, all library blocks linked to in the exported model.

If you select this option, do not also select the MathWorks Library Links option.

MathWorks Library Links
Export MathWorks built-in library blocks linked to systems that you select to export.

For example, if you select the Entire Model option, all MathWorks library blocks linked to in the
exported model.

If you select this option, along with the Masked Subsystems option, right-clicking a built-in library
block in a web view displays the parameter values for that block.

If you select this option, do not also select the Library Links option.

Masked Subsystems
Allow web view interaction with masked subsystem contents in the systems that you select to export.
Select this option to view the contents of the masked subsystem and open masked subsystem dialog
boxes.

Package name
The default name is the name of the model that contains the systems to export.

If you use the default Package Type setting of Zipped, the Package name field specifies the name
of the zip file.

If you set Package Type to Unzipped, the Package name field specifies the name of the folder.

If the zip file or folder with the specified name in the specified folder already exists, Simulink Report
Generator overwrites the existing zip file or folder contents. To avoid overwriting an existing Web
View files, consider selecting the If package exists, increment name to prevent overwriting
option.

Folder
The folder in which to store the exported web view files. The default folder is the MATLAB current
folder.

Specify a full path to the folder or click Select Folder to navigate to the folder.

 Web View

5-39

If package exists, increment name to prevent overwriting
Increment the package name by appending a system-generated number to the end of the zip file or
folder name.

For example, suppose you use the following settings:

• For Package Type, you use the default setting of Zipped.
• For Package name, you use vdp_web_view.

When you export the Web view the first time, the resulting zip file is called vdp_web_view. If you
export the Web view again, Simulink Report Generator creates a vdp_web_view1.zip file, and
preserves the original vdp_web_view file.

Package Type
Specify the file packaging to use when exporting the Web view.

• Zipped — (Default) Export as a zipped file that includes the Web view file, along with files that
support the display of the Web view. Zip file packaging compresses the files and consolidates the
web view and supporting files into one file.

• Unzipped — Export as the Web view file and supporting files, without being zipped. You can open
an unzipped Web view file directly.

• Both zipped and unzipped— Export as both a zipped file and an unzipped file

Include Model Coverage view
This option appears only if you have Simulink Coverage software installed.

Provides additional information about the model, based on the Model Coverage report.

Include Embedded Coder view
This option only appears if both these conditions exist:

• You have the Embedded Coder® software installed.
• There is generated code for the systems that you export.

This view provides additional information about the generated code for a block in the web view.

Click a block in the Web view. The generated code for that block appears in the Web Informer pane
below the displayed model.

Include Requirements view
Captures model requirements information. For details, see “Include Model Requirements and
Coverage Data in a Web View” on page 5-18.

This option appears only if you have Simulink Requirements software installed.

5 Export Simulink Models to Web Views

5-40

Include Coverage view
Captures model coverage information based on the Model Coverage report. For details, see “Include
Model Requirements and Coverage Data in a Web View” on page 5-18.

This option appears only if you have Simulink Coverage software installed. You must set up a
coverage report for the model and simulate the model before you can use this option.

 Web View

5-41

Components

For a list of MATLAB Report Generator components, see the MATLAB Report Generator
documentation.

6

Annotation Loop
Run child components multiple times for each Simulink annotation in current context

Description
This component runs its child components multiple times for each Simulink annotation in the current
context. The parent component determines the context.

• Model Loop: Reports on all annotations inside the reported portion of the reported model.
• System Loop: Reports on all annotations inside the current system.
• Block Loop or Signal Loop: Does nothing.

Loop Options
The Loop Options pane displays information about the current context. You can sort
Alphabetically by text or In traversal order.

Child components of the Annotation Loop consider their context to be annotations when the report
is running.

For example, the following components report on the looped annotation:

• Simulink Automatic Table
• Simulink Linking Anchor
• Simulink Name
• Simulink Property
• Simulink Property Table

Use a Summary Table component to show annotation objects in reports. Each Summary Table
component creates a single table with each reported annotation on a single row of the table.

Section Options
• Create section for each object in loop: Inserts a section in the generated report for each object

found in the loop.
• Display the object type in the section title: Inserts the object type automatically into the

section title in the generated report.
• Create link anchor for each object in loop: Create a link target for each annotation in the loop

so that other parts of the report can link to it.

See Also
Block Loop, Model Loop, Signal Loop, System Loop, Simulink Linking Anchor,
Simulink Name, Simulink Property, Simulink Property Table, Simulink Summary
Table

6 Components

6-2

Block Execution Order List
Create a list or table of all nonvirtual blocks in the model, showing order in which they execute

Description
This component creates a list or table of all nonvirtual blocks in the model, showing the order in
which they execute.

For more information about virtual and nonvirtual blocks, see “Nonvirtual and Virtual Blocks”.

Properties
• List Title:

• Automatic: Generates a list or table title automatically.
• Custom: Enables you to enter a title.

• Include block type information: Include each block's BlockType property in the list or table.
• Look under nonvirtual subsystems: The default is Automatic (On for models, Off for

systems). Set it to On or Off.

Insert Anything into Report?
Yes. List.

Class
rptgen_sl.csl_blk_sort_list

See Also
Block Loop

 Block Execution Order List

6-3

Block Loop
Run child components for each block in the current system, model, or signal

Description
This component runs its child components for each block contained in the current system, model, or
signal.

For conditional processing based of blocks, you can use the RptgenSL.getReportedBlock
function. For more information, see “Loop Context Functions” on page 4-90.

Report On
This pane describes the type of object on which this component operates.

• Automatic list from context: Report on all blocks in the current context. The parent
component of the Block Loop determines its context. If this component does not have the Model
Loop, System Loop, Signal Loop, or Block Loop as its parent, selecting this option causes this
component to report on all blocks in all models.

• Model Loop: Reports on all blocks in the current model.
• System Loop: Reports on all blocks in the current system.
• Signal Loop: Reports on all blocks connected to the current signal.

• Custom - use block list: Enables you to specify a list of blocks on which to report. Enter the
full path of each block.

Loop Options
Choose block sorting options and reporting options in this pane.

• Sort blocks:

Use this option to select how to sort blocks (applied to each level in a model):

• Alphabetically by block name. Sorts blocks alphabetically by their names.
• Alphabetically by system name. Sorts systems alphabetically. The report lists blocks in

each system, but in no particular order.
• Alphabetically by full Simulink path. Sorts blocks alphabetically by Simulink path.
• By block type. Sorts blocks alphabetically by block type.
• By block depth. Sorts blocks by their depth in the model.
• By layout (left to right): Sorts blocks by their location in the model layout, by rows.

The block appearing the furthest toward the left top corner of the model is the anchor for the
row. The row contains all other blocks that overlap the horizontal area defined by the top and
bottom edges of the anchor block. The other rows use the same algorithm, using as the anchor
the next unreported block nearest the left top of the model.

6 Components

6-4

• By layout (top to bottom): Sorts blocks by their location in the model layout, by
columns. The block appearing the furthest toward the left top corner of the model is the anchor
for the column. The column contains all other blocks that overlap the vertical area defined by
the left and right edges of the anchor block. The other columns use the same algorithm, using
as the anchor the next unreported block nearest the left top of the model.

• By traversal order. Sorts blocks by traversal order.
• By simulation order. Sorts blocks by execution order.
• %<VariableName>: Inserts the value of a variable from the MATLAB workspace. The %<>

notation can denote a string or cell array. The following example reports on the theta dot
integrator block and the theta integrator block in the model simppend, using the variable
Z={ 'simppend/theta'}:

simppend/theta dot
%<Z>

The generated report includes information about the following blocks:

• simppend/theta dot
• simppend/theta

For more information, see %<VariableName> Notation on the Text component reference
page in the MATLAB Report Generator documentation.

• Search for Simulink property name/property value pairs: Reports only on Simulink blocks
with specified property name/property value pairs.

Section Options
• Create section for each object in loop: Inserts a section in the generated report for each block

found in the loop.
• Display the object type in the section title: Automatically inserts the object type into the

section title in the generated report.
• Create link anchor for each object in loop: Create a link target for each block in the loop so

that other parts of the report can link to it. For example, the image created by a System
Snapshot component can link to the block information only if you select this check box.

Insert Anything into Report?
Yes, inserts a section if you select the Create section for each object in loop option and a link
target if you select Create link anchor for each object in loop.

 Block Loop

6-5

Class
rptgen_sl.csl_blk_loop

See Also
Model Loop, Signal Loop, System Loop, Simulink Linking Anchor, Simulink Name,
Simulink Property, Simulink Property Table, Simulink Summary Table

6 Components

6-6

Block Type Count
Count number of each block type in the current model or system

Description
This component counts the number of each block type in the current model or system. Within a
model, this component counts blocks underneath masks and inside library links.

For more information about block types, see “Nonvirtual and Virtual Blocks”.

Count Types
The parent of this component determines where to count block types:

• Model Loop: Reports all block types in the current model:

• All blocks in model: Counts block types in the entire model.
• All blocks in reported systems: Counts block types only in systems that appear in the

report.
• System Loop: Reports all block types in the current system.

Table Content
• Table title: Allows you to enter the table title.
• Show block names in table: Includes a column that displays all block names in the table.
• Sort table:

• Alphabetically by block type: Sorts blocks alphabetically by block type.
• By number of blocks: Sorts by decreasing number of occurrences.

• Show total count: Displays total number of block types.

Insert Anything into Report?
Yes. Table.

Class
rptgen_sl.csl_blk_count

See Also
Block Loop, Model Loop, System Loop

 Block Type Count

6-7

Bus
Create list of signals exiting from Bus Selector block

Description
This component creates a list of signals exiting a Bus Selector block. The list contains signals leaving
from the reported block or downstream buses and signals.

The parent of this component determines which buses appear in the report:

• Model Loop: Includes all buses in the current model.
• System Loop: Includes all buses in the current system.
• Block Loop: If the current block is a bus block, then the report includes that block.
• Signal Loop: Includes all buses connected to the current signal.

If the Bus component does not have a looping component as its parent, it reports on all buses in all
open models.

Properties
• Show Bus Hierarchy: Specifies whether the list displays downstream buses hierarchically.
• Insert linking anchor for bus blocks: Inserts a linking anchor for each bus block. This property

designates the list item as the location to which other links for that block point. (For more
information, see the Simulink Linking Anchor or Link component reference pages.) Do not
use this option if you have already specified an anchor location for the bus block with an Object
Linking Anchor component.

• Insert linking anchor for signals: Inserts a linking anchor for each signal. This property
designates the list item as the location to which other links for that signal point. For more
information, see the Simulink Linking Anchor or Link component reference pages.) Do not
use this option if you have already specified an anchor location for the signal with an Object
Linking Anchor component.

• Title: Inserts a title before each list. This attribute supports the %<varname> notation. For more
information, see %<VariableName> Notation on the Text component reference page in the
MATLAB Report Generator documentation.

Insert Anything into Report?
Yes. List.

Class
rptgen_sl.csl_blk_bus

See Also
Block Loop, Model Loop, Signal Loop, Simulink Linking Anchor, System Loop,

6 Components

6-8

C Function
Insert information about C Function block contents

Description
This component displays tables with information about the C code and symbols used by a C Function
block.

By default, the component reports:

• A table that includes the Description parameter and any custom mask parameters
• A table that lists the contents of the Symbols parameter
• Sections for the C code defined by the Output Code, Start Code, and Terminate Code

parameters

You can specify the parameters to report and customize the generated tables.

A C Function component can have the following components as its parent:

• Model Loop
• System Loop
• Block Loop

For details about C Function blocks, see the C Function block reference page.

Object Properties Table
• Include block object properties: Generates a table with block object property information.
• Table title: Insert a title for the block object properties table.

• Automatic: Use the default title for the table.
• Custom: Use the title that you specify for the table.

• Header row: Select a header row for the table in the generated report.

• No header: Includes no header row
• Type and Name: Includes a header row with columns for the name and object type
• Custom: Includes a custom header

• Properties list: Specify whether to have Report Explorer select properties automatically or to list
the properties to report on.

• Determine properties automatically: Let the Report Explorer automatically select the
properties to report. The Report Explorer reports the C Function block parameter dialog box
prompt properties.

• Show properties: Specify a list of properties to report. Enter the names of the C Function
block properties that you want the report to include.

 C Function

6-9

Property names often differ from the Simulink dialog box prompts. To determine the property
names of a C Function block, select the block and enter this code at the MATLAB command
line:

get(gcbh)

• Display property names as prompts: Display the property names as prompts in the generated
report. The report includes the dialog box string instead of the underlying code property.

• Don't display empty values: Exclude the empty parameters in the generated report.

Symbols Table
• Include symbols table: Generate a table with information about the symbols used by the C

Function block.
• Table title: Insert a title for the symbols table.

• Automatic: Use the default title for the table.
• Custom: Use the title that you specify for the table.

• Grid lines: Show grid lines for the table.
• Spans page width: Make the table as wide as the page.
• Column alignment: Align the text in each column:

• Left
• Center
• Right
• Double justified

Output, Start, and Terminate Code
• Include output code: Include the code that the C Function block executes during simulation.
• Include start code: Include the initialization code of the C Function block.
• Include terminate code: Include the cleanup code that the C Function block runs at model

termination.

Insert Anything into Report?
Yes. Tables and code.

Class
rptgen_sl.csl_cfcn

See Also
Block Loop, Model Loop, System Loop, MATLAB Function

6 Components

6-10

Chart Loop
Run child components for specified Stateflow charts

Description
This component runs its children for specified Stateflow charts.

For conditional processing for a chart, you can use the RptgenSF.getReportedChart function. For
more information, see “Loop Context Functions” on page 4-90.

Report On
• Automatic list from context: Report on all chart blocks in the context set by the parent of

this component.

• Model Loop: Reports on all Stateflow chart blocks in the current model.
• System Loop: Reports on all Stateflow chart blocks in the current system.
• Signal Loop: Reports on all Stateflow chart blocks connected to the current signal.
• Machine Loop: Reports on the current block if it is in a Stateflow chart.

If the Chart Loop component has any other type of component as its parent, selecting this option
causes it to report on all Stateflow chart blocks.

• Custom - use block list: Reports on a specified list of Stateflow chart blocks.

Loop Options

Choose chart block sorting options and reporting options in this pane.

• Sort blocks: Specifies how to sort blocks (applied to each level in a model). This option is
available if you select Automatic list from context in the Report On section, or if you
select Custom - use block list and the Sort blocks option.

• Alphabetically by block name. Sorts blocks alphabetically by name.
• Alphabetically by system name. Sorts systems alphabetically by name. Lists blocks in

each system, but in no particular order.
• Alphabetically by full Simulink path. Sorts models alphabetically by their full paths.
• By block type. Sorts blocks alphabetically by block type.
• By depth. Sorts blocks by their depth in the model.
• By layout (left to right): Sorts blocks by their location in the model layout, by rows.

The block appearing the furthest toward the left top corner of the model is the anchor for the
row. The row contains all other blocks that overlap the horizontal area defined by the top and
bottom edges of the anchor block. The other rows use the same algorithm, using as the anchor
the next unreported block nearest the left top of the model.

 Chart Loop

6-11

• By layout (top to bottom): Sorts blocks by their location in the model layout, by
columns. The block appearing the furthest toward the left top corner of the model is the anchor
for the column. The column contains all other blocks that overlap the vertical area defined by
the left and right edges of the anchor block. The other columns use the same algorithm, using
as the anchor the next unreported block nearest the left top of the model.

• By simulation order. Sorts blocks by execution order.
• %<VariableName>: Inserts the value of a variable from the MATLAB workspace. The %<>

notation can denote a string or cell array. For more information, see %<VariableName>
Notation on the Text component reference page in the MATLAB Report Generator
documentation.

• Search for Simulink property name/property value pairs: Reports on Simulink blocks with
specified property name/property value pairs.

• Search Stateflow: Reports on Stateflow charts with specified property name/property value
pairs.

Section Options
• Create section for each object in loop: Inserts a section in the generated report for each object

found in the loop.
• Display the object type in the section title: Inserts the object type automatically into the

section title in the generated report.
• Create link anchor for each object in loop: Create a link target for each chart in the loop so

that other parts of the report can link to it. For example, the image created by a Stateflow
Snapshot component can link to this information only if you select this check box.

Insert Anything into Report?
Yes, inserts a section if you select the Create section for each object in loop option.

Class
rptgen_sf.csf_chart_loop

See Also
Block Loop, Machine Loop, Model Loop, Signal Loop, System Loop, Simulink Function
System Loop

6 Components

6-12

Code Generation Summary
Insert version number information, list of generated files, tables summarizing code generation
configuration information, and subsystem maps into report

Description
This component reports the following information:

• Version number information
• List of generated files
• Code generation configuration information
• Subsystem map

Summary
• General information: Includes the following information in the report:

• Model name and version
• Simulink Coder version number
• List of full paths of generated files

• Configuration settings: Includes tables that list optimization and Simulink Coder target
selection and build process Configuration Parameter settings.

• Subsystem map: Includes in the report a unique mapping between subsystem numbers and
subsystem labels in the model.

Traceability Report
Use settings from model: When you select this option, the report uses all of the following
configuration settings, as specified in your model. Deselecting this option allows you to turn off one or
more of these settings as needed:

• Eliminated/virtual blocks
• Traceable blocks
• Traceable Stateflow Objects
• Traceable MATLAB Function Blocks

For more information on these configuration settings, see “Model Configuration Parameters: Code
Generation Report” (Simulink Coder).

Insert Anything into Report?
Yes. Tables and list.

Class
RptgenRTW.CCodeGenSummary

 Code Generation Summary

6-13

See Also
Import Generated Code

6 Components

6-14

Data Dictionary Traceability Table
Insert a table that links data dictionary information to requirements

Description
This component inserts a table into the report. The table links data dictionary information to
corresponding requirements. This component reports on the currently open data dictionary. Place this
component inside a section, paragraph, or table component.

To use this component, your report setup must include Eval statements that open a data dictionary
or determine the data dictionary that is open. To open a template report that shows an example of
these Eval statements, at the MATLAB command prompt, enter:

setedit([matlabroot '/toolbox/slrequirements/+rmide/rmide.rpt'])

Find theEval statements in the if condition at the beginning of the report setup.

Table Options
Specify information about the table.

• Table title: Specify the table title.

• No title — Do not include a table title.
• Object name — Use the name of the data dictionary in the title.
• Custom — Specify your own table title.

Table Columns
Specify the table columns that you want to include in the report. The Document name, Locations
within document, and Requirement keyword check boxes correspond to properties on the
Requirements Management Interface Link Editor dialog box.

• Description — Include the description of the requirement. The description helps you to identify
the requirement the table is linking to. Leave this box selected to improve the readability of your
table.

• Document name — Include the name of the document where the requirement is located.
• Locations within document — Include the identifier of a location in the document.
• Requirement keyword — Include the requirement keyword.

Insert Anything into Report?
Yes. Table.

Class
RptgenRMI.DDReqTable

 Data Dictionary Traceability Table

6-15

See Also
MATLAB Code Traceability Table, Simulink Test Suite Traceability Table, rmi

6 Components

6-16

Documentation
Include content extracted from DocBlock blocks

Description
This component includes DocBlock block content in a report. It can have the following components as
its parent:

• Model Loop
• System Loop
• Block Loop

The DocBlock content is included in a report in one of these ways:

• The actual content is included in the report.
• The content is saved to an external file and the report links to the file.
• The content is saved to an external file and the report includes the path of the file.
• The content is embedded in the report and the report includes a link to the embedded file.

The way that the DocBlock content is included in a report depends on:

• The DocBlock content type.
• The report type and whether the report is template-based. See “Report Templates”.
• The values of the ConvertHTML and EmbedFile properties, for template-based reports.

For template-based reports, the report includes the DocBlock content according to this table.

DocBlock
Content

Type

Report Type ConvertHT
ML

Property

EmbedFile
Property

Report Includes
DocBlock
Content

External
Link to

DocBlock
Content

File

Link to
Embedded
DocBlock
Content

File
text HTML N/A N/A yes no no
text HTML-FILE N/A N/A yes no no
text Word N/A N/A yes no no
text PDF N/A N/A yes no no

HTML HTML N/A N/A yes no no
HTML HTML-FILE N/A N/A yes no no
HTML PDF true N/A yes no no
HTML PDF false true no no yes
HTML PDF false false no yes no
HTML Word true N/A yes no no

 Documentation

6-17

DocBlock
Content

Type

Report Type ConvertHT
ML

Property

EmbedFile
Property

Report Includes
DocBlock
Content

External
Link to

DocBlock
Content

File

Link to
Embedded
DocBlock
Content

File
HTML Word false N/A no yes no
RTF PDF N/A true no no yes
RTF PDF N/A false no yes no
RTF Word N/A N/A yes no no
RTF HTML N/A true no no yes
RTF HTML N/A false no yes no
RTF HTML-FILE N/A N/A no yes no

For reports that are not template-based, the report includes the DocBlock content according to this
table.

DocBlock
Content Type

Report Type Report Includes
DocBlock
Content

External Link to
DocBlock

Content File

Path of DocBlock
Content File

text web (HTML) yes no no
text Acrobat (PDF) yes no no
text Word (RTF) yes no no
text RTF yes no no

HTML web (HTML) yes no no
HTML Acrobat (PDF) no yes no
HTML Word (RTF) no no yes
HTML RTF no no yes
RTF Web (HTML) no yes no
RTF Acrobat (PDF) no yes no
RTF Word (RTF) yes no no
RTF RTF yes no no

Note For non-English HTML DocBlock text that you want to include in a Documentation component,
use UTF-8 file encoding. Use a simple text editor to create the HTML code.

Properties
• Import file as: Specifies how to format the imported information. The following example shows

how each option works, using the following text as input:

6 Components

6-18

First row.
 Second row.

Third row follows blank line.

• Plain text (ignore line breaks). Imports plain text without any line breaks (no
paragraphs), as in this example:

First row. Second row. Third row follows blank line.
• Paragraphs defined by line breaks. Imports the text contained in paragraphs defined

by line breaks (hard returns or carriage returns), as in this example:

First row.
Second row.

Third row follows blank line.
• Paragraphs defined by empty rows. Imports text contained in paragraphs defined by

empty rows (rows that do not contain text), as in this example:

First row. Second row.

Third row follows blank line.
• Text (retain line breaks). Imports plain text, including line breaks, as in this example:

First row.
Second row.

Third row follows blank line.
• Fixed-width text (retain line breaks). Imports fixed-width text (all letters have the

same width or size) including line breaks, as in this example:

First row.
 Second row.

Third row follows blank line.

Tip This option is useful for importing MATLAB files.
• Insert linking anchor for blocks: Inserts a linking anchor for each DocBlock block that

designates the location where other links for that block point. (See the Simulink Linking
Anchor or Link component reference pages for more help.) Do not use this option if you have
already specified an anchor location for a DocBlock block with an Object Linking Anchor
component.

• ConvertHTML: Specifies whether to convert HTML content to a DOM object that is appended to
the report. This option applies only to Word and PDF template-based reports. If the option is
selected, the content is converted to HTML. If the option is not selected:

• For a PDF report, the report embeds the content or includes an external link to the content,
depending on the value of the EmbedFile option.

• For a Word report, the report includes an external link to the content.
• EmbedFile: Specifies whether to embed the content of the DocBlock block in the generated

report. This option applies only to HTML or RTF content with template-based PDF reports and to
RTF content with template-based HTML reports. If the option is selected, the content is embedded
in the report and a hyperlink to the embedded content is inserted.

 Documentation

6-19

Insert Anything into Report?
Yes. Text, embedded file, or link to external file.

Class
rptgen_sl.csl_blk_doc

See Also
Block Loop, Model Loop, Simulink Linking Anchor, System Loop

6 Components

6-20

Fixed Point Block Loop
Run child components for the Simulink model, system, or signal defined by parent component

Description
This component runs its children for the Simulink model, system, or signal that its parent defines.
Options for the parent component are:

• Model Loop
• System Loop
• Signal Loop

Report On
• Automatic list from context: Reports on all fixed-point blocks in the context of the parent

of this component. For example, if the parent component is the System Loop, then this
component reports on all fixed-point blocks in the current system. If this component does not have
a looping component as its parent, then selecting this option causes the component to report on
all fixed-point blocks in all models.

• Custom - use block list: Reports on a specified list of blocks.

Loop Options
Choose block sorting options and reporting options in this pane.

• Sort blocks: Specifies how to sort blocks (applied to each level in a model). This option is
available if you select the Automatic list from context option in the Report On section, or
if you select Custom - use block list and the Sort blocks options.

• Alphabetically by block name. Sorts blocks alphabetically by name.
• Alphabetically by system name. Sorts systems alphabetically. Lists blocks in each

system, but in no particular order.
• Alphabetically by full Simulink path. Sorts blocks alphabetically by Simulink path.
• By block type. Sorts blocks alphabetically by block type.
• By block depth. Sorts blocks by their depth in the model.
• By layout (left to right): Sorts blocks by their location in the model layout, by rows.

The block appearing the furthest toward the left top corner of the model is the anchor for the
row. The row contains all other blocks that overlap the horizontal area defined by the top and
bottom edges of the anchor block. The other rows use the same algorithm, using as the anchor
the next unreported block nearest the left top of the model.

 Fixed Point Block Loop

6-21

• By layout (top to bottom): Sorts blocks by their location in the model layout, by
columns. The block appearing the furthest toward the left top corner of the model is the anchor
for the column. The column contains all other blocks that overlap the vertical area defined by
the left and right edges of the anchor block. The other columns use the same algorithm, using
as the anchor the next unreported block nearest the left top of the model.

• By traversal order. Sorts blocks by traversal order.
• By simulation order. Sorts blocks by execution order.
• %<VariableName>: Inserts the value of a variable from the MATLAB workspace. For more

information, see %<VariableName> Notation on the Text component reference page in the
MATLAB Report Generator documentation.

• Search for Simulink name/property value pairs: Reports only on the fixed-point blocks with
the specified property name-value pairs. To enable searching, click the check box. In the first row
of the property name and property value table, click inside the edit box, delete the existing text,
and type the property name and value. To add a row, click the Add row button.

To find the property names for a block, open the documentation for the block and refer to the
Programmatic Use sections or select a block in the model and enter this code at the MATLAB
command line:

get(gcbh)

Section Options
• Create section for each object in loop: Inserts a section in the generated report for each object

found in the loop.
• Display the object type in the section title: Inserts the object type automatically into the

section title in the generated report.
• Create link anchor for each object in loop: Create a link target for each fixed-point block in

the loop so that other parts of the report can link to it. For example, the image created by a
System Snapshot component can link to this information only if you select this check box.

Insert Anything into Report?
Yes, inserts a section if you select Create section for each object in loop and a link target if you
select Create link anchor for each object in loop.

Class
rptgen_fp.cfp_blk_loop

6 Components

6-22

See Also
Block Loop, Model Loop, Signal Loop, Simulink Linking Anchor, System Loop

 Fixed Point Block Loop

6-23

Fixed Point Logging Options
Set fixed-point options like in Fixed Point Tool

Description
This component sets fixed-point options like those set in the Fixed Point Tool (invoked by running the
fxptdlg function).

This component must be a child of the Model Loop component. Use this component to set the
following options on the current model:

• Data type override
• Fixed-point instrument mode
• Logging type

This component can have child components. It is a good practice to use this component with a Model
Simulation component as its child. This approach sets fixed-point properties for the model for the
purpose of the simulation, and then restores them to their original values after the simulation is
complete.

Data Type Override
• Use local settings: Overrides data types according to the value of this parameter set for each

subsystem. Otherwise, settings for parent systems override those of child systems.
• Scaled double: Overrides the output data type of all blocks in the current system or subsystem

with doubles. However, this option maintains the scaling and bias specified in the mask of each
block.

• Doubles: Overrides the output data type of all blocks in the current system or subsystem with
doubles. The overridden values have no scaling or bias.

• Singles: Overrides the output data type of all blocks in the current system or subsystem with
singles. The overridden values have no scaling or bias.

• Off: Does not perform any data type override on any block in the current system or subsystem.

Fixed-Point Instrumentation Mode
Specify logging options in this section. For logged blocks, minimum and maximum simulation values
are written to the workspace.

• Use local settings: Logs data according to the value of this parameter set for each subsystem.
Otherwise, settings for parent systems always override those of child systems.

• Min, max, and overflow: Logs minimum value, maximum value, and overflow data for all blocks
in the current system or subsystem.

• Overflow only: Logs only overflow data for all blocks in the current system or subsystem.
• Force off: Logs no data for any block in the current system or subsystem. Use this selection to

work with models containing fixed point-enabled blocks, if you do not have a Fixed-Point Designer
license.

6 Components

6-24

For more information on logging simulation results, see “Propose Fraction Lengths Using Simulation
Range Data” (Fixed-Point Designer).

Logging Type
Specify how to record logs in this section:

• Overwrite log: Clears information in the logs before new logging data is entered.
• Merge log: Merges new logging data with previously logged information.

Insert Anything into Report?
No.

Class
rptgen_fp.cfp_options

See Also
Model Simulation

 Fixed Point Logging Options

6-25

Fixed Point Property Table
Insert table that reports on Fixed-Point Designer block property name/property value pairs

Description
This component inserts a table that reports on Fixed-Point Designer block property name/property
value pairs.

Table
Select a preset table, which is already formatted and configured, in the Preset table list in the
upper-left corner of the attributes page.

• Preset table

Specifies the type of object property table.

• Default
• Mask properties
• Block limits
• Out-of-range errors
• All fixed-point properties
• Blank 4x4

To apply the specified table, select the table and click Apply.
• Split property/value cells: Split property name/property value pairs into separate cells. For the

property name and property value to appear in adjacent horizontal cells in the table, select the
Split property/value cells check box. In this case, the table is in split mode, so there only one
property name/property value pair can exist in a cell. If there is more than one name/property pair
in a cell, only the first pair appears in the report. The report ignores all subsequent pairs.

For the property name and property value to appear together in one cell, clear the Split
property/value cells check box. That option specifies nonsplit mode. Nonsplit mode supports
more than one property name/property value pair and text.

Before switching from nonsplit mode to split mode, make sure that there is only one property
name/property value pair per table cell. If you have more than one property name/property value
pair or text in one cell, only the first value pair appears in the report. Subsequent pairs and text
are omitted.

• Display outer border: Display the outer border of the table in the generated report.
• Table spans page width: Display the table across the entire page in the generated report.

Table Cells
Select table properties to modify. The selection in this pane affects the available fields in the Cell
Properties pane.

6 Components

6-26

Cell Properties
• Contents

Modify the contents of the table cell selected in the Table Cells pane.
• Show as: Specifies the format for the contents of the table cell.

• PROPERTY Value
• Value
• Property Value
• Property: Value
• PROPERTY: Value
• Property - Value
• PROPERTY - Value

• Alignment: Aligns the contents of the table cell.

• Center
• Left
• Right
• Double justified

• Lower border: Displays the lower border of the table in the generated report.
• Right border: Displays the right border of the table in the generated report.

Creating Custom Tables

To create a custom table, edit a preset table, such as the Blank 4x4 table. Add and delete rows and
add properties. To open the Edit Table dialog box, click Edit.

For details about creating custom property tables, see “Property Table Components”.

Insert Anything into Report?
Yes. Table.

Class
rptgen_fp.cfp_prop_table

See Also
Fixed Point Summary Table

 Fixed Point Property Table

6-27

Fixed Point Summary Table
Table of specified fixed-point block properties or parameters

Description
This component displays properties or parameters of specified fixed-point blocks in a table.

Properties
Table title

Choose a table title in the generated report:

• Automatic: Generates a title automatically from the parameter.
• Custom: Specifies a custom title.

Property Columns
Property name

This field displays the object properties to include in the Summary Table in the generated report.

• To add a property:

1 Select the appropriate property level in the menu
2 Select the property to add from the selection list and click Add.

• To delete a property, select the property name and click the Delete button.
• To move properties up and down in the list, click the Up and Down buttons.

Note Some entries in the list of available properties (such as Depth) are “virtual” properties that you
cannot access using the get_param command. The properties used for property/value filtering in the
block and system loop components must be retrievable by the get_param. Therefore, you cannot
configure your Summary Table to report on all blocks of Depth == 2.

Transpose table

Enabling this check box changes the summary table rows into columns in the generated report,
putting the property names in the first column and the values in the other columns.

Object Rows
• Insert anchor for each row: Inserts an anchor for each row in the summary table.
• Report On: Specifies blocks on which to report:

• Automatic list from context. Reports on all blocks in the current context.
• Custom - use block list. Reports on a specified list of blocks. To include a given block in

the report, specify its full path.

6 Components

6-28

Loop Options
• Sort blocks: Specifies how to sort blocks (applied to each level in a model):

• Alphabetically by block name. Sorts blocks alphabetically by name.
• Alphabetically by system name. Sorts systems alphabetically. Lists blocks in each

system, but in no particular order.
• Alphabetically by full Simulink path. Sorts blocks alphabetically by Simulink path.
• By block type. Sorts blocks alphabetically by block type.
• By block depth. Sorts blocks by their depth in the model.
• By layout (left to right): Sorts blocks by their location in the model layout, by rows.

The block appearing the furthest toward the left top corner of the model is the anchor for the
row. The row contains all other blocks that overlap the horizontal area defined by the top and
bottom edges of the anchor block. The other rows use the same algorithm, using as the anchor
the next unreported block nearest the left top of the model.

• By layout (top to bottom): Sorts blocks by their location in the model layout, by
columns. The block appearing the furthest toward the left top corner of the model is the anchor
for the column. The column contains all other blocks that overlap the vertical area defined by
the left and right edges of the anchor block. The other columns use the same algorithm, using
as the anchor the next unreported block nearest the left top of the model.

• By traversal order. Sorts blocks by traversal order.
• By simulation order. Sorts blocks by execution order.

• Search for Simulink property name/property value pairs: Reports only on Simulink blocks
with specified property name/property value pairs.

Insert Anything into Report?
Yes. Table.

Class
rptgen_fp.cfp_summ_table

See Also
Fixed Point Property Table

 Fixed Point Summary Table

6-29

Import Generated Code
Import source and header files generated by Simulink Coder software, and custom files specified as
part of model

Description
This component imports source and header files generated by Simulink Coder software. It also
imports custom files that you specify as part of your model.

Properties
• Source files (auto-generated): Includes the following files in the report:

• .c and .cpp source files generated by Simulink Coder software.
• Simulink Coder source files, such as the setup file and supporting files in the build folder.

This check box is selected by default. Clear it to omit source files.
• Header files (auto-generated): Includes the following files in the report:

• .h and .hpp header files generated by Simulink Coder software.
• Simulink Coder header files in the build folder.

This check box is selected by default. Clear it to omit source files.
• Custom files: Includes custom source files that you specify in the Code Generation > Custom

Code pane of the Configuration Parameters dialog box. This check box is deselected by default.

Insert Anything into Report?
Yes. Generated code listings.

Class
RptgenRTW.CImportCode

See Also
Code Generation Summary

6 Components

6-30

Look-Up Table
Report on lookup table blocks

Description
The Look-Up Table component reports on the following blocks in the Simulink Lookup Tables library.
Some examples of the lookup table blocks include:

• 1-D Lookup Table
• n-D Lookup Table
• Sine, Cosine
• Interpolation Using Prelookup
• Direct Lookup Table (n-D)

The Look-Up Table component inserts a figure and/or table into the report. The table contains input
and output numeric values. A figure plots these values.

Note The Look-Up Table component does not display a table or plot for the Direct Lookup Table (n-D)
block if the block is configured to generate the table during simulation as a block input. Instead, the
Look-Up Table displays a note in the report to the effect that the table is generated dynamically
during simulation.

Look-Up Table Options
This pane allows you to specify the types of lookup table blocks to include in the report and how they
appear. If you select none of the check boxes in this pane, the component does not insert anything
into the report.

• The Look-Up Table displays results according to the type of its parent component:

• Model Loop: Includes all lookup tables in the current model.
• System Loop: Includes all lookup tables in the current system.
• Block Loop: If the current block is a lookup table, the reports that block.
• Signal Loop: Includes all lookup tables connected to the current signal.
• If the Look-Up Table does not have any of the looping components as its parent, it includes all

lookup tables in all open models.
• Plot 1-D data: Plots data from a 1-D Lookup Table block. Choose the plot type, Line plot or

Bar plot, from the corresponding list. The input data appears on the horizontal or x-axis, and
the output data appears on the vertical or y-axis.

For more information on line and bar plots, see “2-D and 3-D Plots”.
• Create table for 1-D data: Creates a table that contains numeric data values from the 1-D

Lookup Table block.
• Plot 2-D data: Creates a plot of 2-D Lookup Table blocks. You can specify whether the data

appears as a surface plot or a line plot. The line plot is best for small data sets, and the surface
plot for larger tables. For more information on surface and line plots, see “2-D and 3-D Plots”.

 Look-Up Table

6-31

Note This option creates a 2-D slice through n-D data.
• Create table for 2-D data: Creates a table that contains numeric data values from the 2-D

Lookup Table block.
• Create table for N-D data: Creates a table that contains numeric data values from the n-D

Lookup Table block.

Print Options
• Image file format: Specifies the image file format. Select Automatic HG Format (the default)

to choose automatically the format best suited for the output format that you chose in the Report
component. Otherwise, choose an image format that your output viewer can read.

• Automatic SL Format (Uses the Simulink file format selected in the Preferences dialog box)
• Bitmap (16m-color)
• Bitmap (256-color)
• Black and white encapsulated PostScript
• Black and white encapsulated PostScript (TIFF)
• Black and white encapsulated PostScript2
• Black and white encapsulated PostScript2 (TIFF)
• Black and white PostScript
• Black and white PostScript2
• Color encapsulated PostScript
• Color encapsulated PostScript (TIFF)
• Color encapsulated PostScript2
• Color encapsulated PostScript2 (TIFF)
• Color PostScript
• Color PostScript2
• JPEG high quality image
• JPEG medium quality image
• JPEG low quality image
• PNG 24-bit image
• TIFF - compressed
• TIFF - uncompressed
• Windows metafile

• Paper orientation:

• Landscape
• Portrait
• Rotated
• Use figure orientation: Uses the orientation for the figure, which you set with the

orient command.

6 Components

6-32

• Full page image (PDF only): In PDF reports, scales images to fit the full page, minimizes
page margins, and maximizes the size of the image by using either a portrait or landscape
orientation.

For more information about paper orientation, see the orient command in the MATLAB
documentation.

• Image size: Allows you to specify the image size in the report by selecting Use figure
PaperPositionMode setting and setting the PaperPositionMode property of the Handle
Graphics figure.

• Automatic (same size as on screen):
• Custom: Specifies a custom image size. Set the image size using the Size field and Units list.

For more information on paper position mode, see orient in the MATLAB documentation.
• Size: Allows you to enter the size of the Handle Graphics figure snapshot in the format wxh (width

times height). This field is active only if you choose Custom in the Image size list box.
• Units: Allows you to enter for the size of the Handle Graphics figure snapshot. This field is active

only if you choose Custom in the Image size list box.
• Invert hardcopy: Causes the Handle Graphics InvertHardcopy property to invert colors for

printing. In other words, this option changes dark colors to light colors and light colors to dark
colors. To change colors in your image, choose one of the following options:

• Automatic: Automatically changes a dark axes colors to light axes colors. If the axes color is a
light color, this option does not invert the color.

• Invert: Changes dark axes colors to light axes colors, and light axes colors to dark axes
colors.

• Don't invert: Does not change the colors in the image that appears on the screen for
printing.

• Use figure's InvertHardcopy setting: Uses the InvertHardcopy property set in the
Handle Graphics image.

• Make figure background transparent: Makes the image background transparent.

Display Options
• Scaling: Controls size of the image, as displayed in a browser. Making an image larger using this

option does not affect the storage size of the image, but the quality of the displayed image may
decrease as you increase or decrease the size of the displayed image.

Generally, to achieve the best and most predictable display results, use the default setting of Use
image size.

• Use image size: Causes the image to appear the same size in the report as on screen
(default).

• Fixed size: Specifies the number and type of units.
• Zoom: Specifies the percentage, maximum size, and units of measure.

• Size: Specifies the size of the snapshot in the form [width, height] format. This field is active only
if you choose Fixed size in the Scaling selection list.

• Max size: Specifies the maximum size of the snapshot in the form [width, height]. This field is
active only if you choose Zoom from the Scaling selection list.

 Look-Up Table

6-33

• Units: Allows you to enter units for the size of the snapshot. This field is active only if you choose
Zoom or Fixed size in the Image size list box.

• Alignment: Only reports in PDF or RTF format support this property.

• Auto
• Right
• Left
• Center

• Title: Enter text to appear above the snapshot.
• Caption: Enter text to appear under the snapshot.

Insert Anything into Report?
Yes. Figure and/or table.

Class
rptgen_sl.csl_blk_lookup

See Also
Block Loop, Model Loop, Signal Loop, System Loop

6 Components

6-34

Machine Loop
Run child components for specified Stateflow machines

Description
This component runs its child components for selected Stateflow machines. The behavior of this
component depends on its parent component. If it has no parent, the Machine Loop runs its child
components for all machines. If it has the Model Loop is its parent, it runs its child components for
all machines in the model.

Loop Options
Search Stateflow

If selected, searches states that you specify in the field that appears under the check box.

Section Options
• Create section for each object in loop: Inserts a section in the generated report for each object

in the loop.
• Display the object type in the section title: Inserts the object type automatically into the

section title in the generated report.
• Create link anchor for each object in loop: Create a link target for each machine in the loop so

that other parts of the report can link to it.

Insert Anything into Report?
Yes, inserts a section if you select the Create section for each object in loop option.

Class
rptgen_sf.csf_machine_loop

See Also
Model Loop

 Machine Loop

6-35

Missing Requirements Block Loop
Apply all child components to blocks that do not have requirements

Description
This component runs its child components for each block in the current system, model, or signal that
do not have associated requirements.

For more information on working with looping components, see“Logical and Looping Components”.

Report On
This pane describes the type of object on which this component operates.

• Automatic list from context: Report on all blocks in the current context that do not have
associated requirements. The parent component of the Block Loop component determines its
context. If this component does not have the Model Loop, System Loop, Signal Loop, or Block
Loop as its parent, selecting this option causes this component to report on all blocks in all
models that do not have associated requirements.

• Model Loop: Reports on all blocks in the current model with no associated requirements.
• System Loop: Reports on all blocks in the current system with no associated requirements.
• Signal Loop: Reports on all blocks connected to the current signal with no associated

requirements.
• Custom - use block list: Enables you to specify a list of blocks on which to report. Enter the full

path of each block.

Loop Options
Choose block sorting options and reporting options in this pane.

• Sort blocks:

Use this option to select how to sort blocks (applied to each level in a model):

• Alphabetically by block name: Sorts blocks alphabetically by their names.
• Alphabetically by system name: Sorts systems alphabetically. Lists the blocks in each

system, but in no particular order.
• Alphabetically by full Simulink path: Sorts blocks alphabetically by Simulink path.
• By block type: Sorts blocks alphabetically by block type.
• By block depth: Sorts blocks by their depth in the model.
• By layout (left to right): Sorts blocks by their location in the model layout, by rows.

The block appearing the furthest toward the left top corner of the model is the anchor for the
row. The row contains all other blocks that overlap the horizontal area defined by the top and
bottom edges of the anchor block. The other rows use the same algorithm, using as the anchor
the next unreported block nearest the left top of the model.

6 Components

6-36

• By layout (top to bottom): Sorts blocks by their location in the model layout, by
columns. The block appearing the furthest toward the left top corner of the model is the anchor
for the column. The column contains all other blocks that overlap the vertical area defined by
the left and right edges of the anchor block. The other columns use the same algorithm, using
as the anchor the next unreported block nearest the left top of the model.

• By traversal order. Sorts blocks by traversal order.
• By simulation order. Sorts blocks by execution order.
• %<VariableName>: Inserts the value of a variable from the MATLAB workspace. The %<>

notation can denote a string or cell array. The following example reports on the theta dot
integrator block and the theta integrator block in the model simppend, using the variable
Z={ 'simppend/theta'}:

simppend/theta dot
%<Z>

The generated report includes information about the following blocks:

• simppend/theta dot
• simppend/theta

For more information, see %<VariableName> Notation on the Text component reference
page in the MATLAB Report Generator documentation.

• Search for Simulink property name/property value pairs: Reports only on the Simulink
blocks with the specified property name-value pairs that do not have associated requirements.

Section Options
• Create section for each object in loop: Inserts a section in the generated report for each block

found in the loop.
• Display the object type in the section title: Automatically inserts the object type into the

section title in the generated report.
• Create link anchor for each object in loop: Create a link target for each missing requirement

in the loop so that other parts of the report can link to it.

Insert Anything into Report?
Yes, inserts a section if you select Create section for each object in loop and a link target if you
select Create link anchor for each object in loop.

 Missing Requirements Block Loop

6-37

Class Name
RptgenRMI.NoReqBlockLoop

See Also
Block Loop, Missing Requirements System Loop, Requirements Block Loop,
Requirements Documents Table, Requirements Signal Loop, Requirements Summary
Table, Requirements System Loop, Requirements Table

6 Components

6-38

MATLAB Code Traceability Table
Insert a table that links MATLAB code to requirements

Description
This component inserts a table into the report. The table links MATLAB code to corresponding
requirements. This component reports on the currently open .m file. Place this component inside a
section, paragraph, or table component.

To use this component, your report setup must include Eval statements that open a .m file or
determine the .m file that is open. To open a template report that shows an example of these Eval
statements, at the MATLAB command prompt, enter:

setedit([matlabroot '/toolbox/slrequirements/+rmiml/rmiml.rpt'])

Find theEval statements in the if condition at the beginning of the report setup.

Table Options
Specify information about the table.

• Table title: Specify the table title.

• No title — Do not include a table title.
• Object name — Use the name of the .m file in the title.
• Custom — Specify your own table title.

Table Columns
Specify the table columns that you want to include in the report. The Document name, Locations
within document, and Requirement keyword check boxes correspond to properties on the
Requirements Management Interface Link Editor dialog box.

• Description — Include the description of the requirement. The description helps you to identify
the requirement the table is linking to. Leave this box selected to improve the readability of your
table.

• Document name — Include the name of the document where the requirement is located.
• Locations within document — Include the identifier of a location in the document.
• Requirement keyword — Include the requirement keyword.

Insert Anything into Report?
Yes. Table.

Class
RptgenRMI.MlReqTable

 MATLAB Code Traceability Table

6-39

See Also
Data Dictionary Traceability Table, Simulink Test Suite Traceability Table, rmi

6 Components

6-40

MATLAB Function
Insert information about MATLAB Function block contents

Description
This component displays tables with information about MATLAB code included in MATLAB Function
blocks. You specify which of the following kinds of information to include in the report:

• Function properties — Parameter settings for the MATLAB Function block
• Argument properties — Properties of the function arguments (for example, complexity)
• The function script — MATLAB code of the function
• Function symbol data — Information about the user-defined and (optionally) built-in MATLAB

variables and functions invoked by the MATLAB function that computes the block outputs.
• Supporting functions — User-defined functions and, optionally, MATLAB functions that are

included in the MATLAB Function block function.

For details about MATLAB Function blocks, see the MATLAB Function block reference page.

Use the MATLAB Function component within a section, paragraph, or table.

Note To view the contents of a MATLAB Function block in a Web viewer, use the Web view feature of
the Simulink Report Generator. In the Web view, hover your cursor over the MATLAB Function block.
For details, see “Create Model Web Views”.

Function Properties Table
• Include function properties: Generates a table with function property information.
• Table title: Insert a title for the function properties table.

• Automatic: Use the default title for the table.
• Custom: Use the title that you specify for the table.

• You can change the header text for property and value columns of the function properties table. In
the Header column, double-click to change the header text. The Width column indicates the
relative width, in relative terms, based on the smallest width you specify. For example, for a three-
column table, if the first column width is 1, and the column width of the other two columns is 3,
then the second and third columns is three times wider than the first column.

• Grid lines: Show grid lines for the table.
• Spans page width: Make the table as wide as the page.

Argument Summary Table
• Include argument summary table: Generate a table with summary information about the

MATLAB Function block function arguments.
• Table title: Insert a title for the argument summary table.

 MATLAB Function

6-41

• Automatic: Use the default title for the table.
• Custom: Use the title that you specify for the table.

• Argument Summary Table Options: Specify the property columns to include in the table.

• To add a property column:

1 In the table on the right, select a property near where you want to insert the new property
column.

2 From the list of properties to the left of the table, select a property that you want to add to
the table.

3 Click the left-arrow button.
4 If necessary, use the up or down arrow button to position the new column.

• To delete a property column, select the property in the table and click the right-arrow button
• You can change the header text for property and value columns of the table. In the Header

column, double-click to change the header text. The Width column indicates the relative
width, in relative terms, based on the smallest width you specify. For example, for a three-
column table, if the first column width is 1, and the column width of the other two columns is
3, then the second and third columns is three times wider than the first column.

• Grid lines: Show grid lines for the table.
• Spans page width: Make the table as wide as the page.
• Column alignment: Align the text in each column:

• Left
• Center
• Right
• Double justified

Detailed Argument Report
• Include detailed argument report: Generate a table with detailed information about the

MATLAB Function block function arguments.
• Argument Property Table Format Options: Specify the argument property columns to include

in the table.

• Table title: Insert a title for the argument properties table.

• Automatic: Use the default title for the table.
• Custom: Use the title that you specify for the table.

• You can change the header text for property and value columns of the table. In the Header
column, double-click to change the header text.

• Grid lines: Show grid lines for the table.
• Spans page width: Make the variable table as wide as the page on which the table appears.

• Include function script: Include the script for the function.
• Include function symbol data: Generate a table that includes information about the user-
defined and (optionally) built-in MATLAB variables and functions invoked by the MATLAB function
that computes the block outputs.

6 Components

6-42

• Highlight script syntax: Use colors to highlight syntax keywords.
• Include supporting functions: Include a list of functions invoked directly or indirectly by the

function script. If you specify to include supporting functions in the report, also specify whether to
include both MATLAB and user-defined functions or just user-defined functions.

• Include code of user-defined supporting functions: Include the code of the user-defined
supporting functions invoked directly or indirectly by the function script.

• Supporting Function Table Format Options:

• Table title: Insert a title for the supporting functions table.

• Automatic: Use the default title for the table.
• Custom: Use the title that you specify for the table.

• You can change the header text for property and value columns of the table. In the Header
column, double-click to change the header text. The Width column indicates the relative
width, in relative terms, based on the smallest width you specify. For example, for a three-
column table, if the first column width is 1, and the column width of the other two columns is
3, then the second and third columns is three times wider than the first column.

• Grid lines: Show grid lines for the table.
• Spans page width: Make the table as wide as the page.

Insert Anything into Report?
Yes. Tables and, optionally, code.

Class
rptgen_sl.csl_emlfcn

See Also
Stateflow Property

 MATLAB Function

6-43

Missing Requirements System Loop
Loop only on systems and subsystems that do not have associated requirements

Description
This component runs its child components for each system or subsystem defined by the parent
component that does not have associated requirements. Insert this component as the child of a
Model Loop component to include systems and subsystems that do not have any associated
requirements in the report.

Report On
• Loop on Systems:

• Select systems automatically: Reports on all systems in the current context that do not have
associated requirements.

• Model Loop: Reports on systems in the current model.
• System Loop: Reports on the current system.
• Signal Loop: Reports on the parent system of the current signal.
• Block Loop: Reports on the parent system of the current block.

If this component does not have any of these components as its parent, selecting this option
reports on all systems in all models that do not have associated requirements.

• Custom - use system list: Reports on a list of specified systems. Specify the full path of each
system.

• %<VariableName>: Inserts the value of a variable from the MATLAB workspace. The %<>
notation can denote a string or cell array. For more information, see %<VariableName>
Notation on the Text component reference page.

Loop Options
• Sort Systems: Specifies how to sort systems.

• Alphabetically by system name (default): Sorts systems alphabetically by name.
• By number of blocks in system: Sorts systems by number of blocks. The list shows systems

by decreasing number of blocks. In other words, it shows the system with the largest number
of blocks that do not have requirements appears first in the list.

• By system depth: Sorts systems by their depth in the model.
• By traversal order: Sorts systems in the traversal order.

• Search for: Reports only on the Subsystem blocks with the specified property name-value pairs.
To enable searching, click the check box. In the first row of the property name and property value
table, click inside the edit box, delete the existing text, and type the property name and value.

To find property names for Subsystem blocks, see the Programmatic Use sections for the
parameters in Subsystem, Atomic Subsystem, CodeReuse Subsystem or select a Subsystem block
in the model and enter this code at the MATLAB command line:

6 Components

6-44

get(gcbh)

Section Options
• Create section for each object in loop: Inserts a section in the generated report for each object

found in the loop.
• Display the object type in the section title: Inserts the object type automatically into the

section title in the generated report.
• Number sections by system hierarchy: Hierarchically numbers sections in the generated

report. Requires that Sort Systems be set to By traversal order.
• Create link anchor for each object in loop: Create a link target for each missing requirement

in the loop so that other parts of the report can link to it.

Insert Anything into Report?
Yes, inserts a section if you select Create section for each object in loop and a link target if you
select Create link anchor for each object in loop.

Class
RptgenRMI.NoReqSystemLoop

See Also
Block Loop, Missing Requirements Block Loop, Requirements Block Loop,
Requirements Documents Table, Requirements Signal Loop, Requirements Summary
Table, Requirements System Loop, Requirements Table, System Loop

 Missing Requirements System Loop

6-45

Model Advisor Report
Insert Model Advisor report or link to Model Advisor report for current model

Description
This component inserts a Model Advisor report for the current model into the report if the report is in
HTML format. For other report formats, it inserts a link to a Model Advisor report for the current
model. For more information about Model Advisor reports, see “Save and View Model Advisor Check
Reports”.

Properties
Use existing report: Includes an existing Model Advisor report in the report. This check box is
selected by default. Clearing this option generates a new Model Advisor report.

Insert Anything into Report?
Yes, a Model Advisor report.

Class
rptgen_sl.CModelAdvisor

See Also
Model Change Log

6 Components

6-46

Model Change Log
Construct model history table that displays model revision information

Description
Run this component before you run the Model Simulation component. It constructs a model history
table that displays information about each logged revision to the model. This model history table
includes:

• The author of each change
• The model version of the change
• The time and date of the change
• A description of the change

See “Model Information” for more information..

Tip If your model has a long revision history, consider limiting the number of revisions reported.

Table Columns
Choose the information displayed in the model revision table in this section:

• Author name: Includes the name of the person who last revised the model.
• Version: Includes the version number of the model.
• Date changed: Includes the revision date of the model.
• Description of change: Includes a description of the revision to the model.

Table Rows
• Limit displayed revisions to: Limits the number of revisions that appears in the report.
• Show revisions since date: Limits the number of revisions that appears in the report by date.

Enter the date in the corresponding text field. This field supports %<varname> notation. For
example, the default value, %<datestr(now-14)>, returns revision history for the last two
weeks.

Table Display
Choose how the model revision history table appears in this section.

• Table title: Specifies the title of the table.
• Sort order: Sorts the table entries from most recent to oldest, or from oldest to most recent.
• Date format: Specifies a preferred date format for the date/time stamps in the table.

 Model Change Log

6-47

Insert Anything into Report?
Yes. Table.

Class
rptgen_sl.csl_mdl_changelog

See Also
Model Advisor Report

6 Components

6-48

Model Configuration Set
Insert active configuration set of a model into a report

Description
This component displays a table with the active configuration set for the model.

For information about configurations sets, see “Manage Configuration Sets for a Model”.

Display Options
• Title: Specifies a title for the table in the generated report.

• Automatic: Generates a title automatically from the parameter.
• Custom: Specifies a custom title.
• None: Uses no title.

• Show configuration set table grids: Show grid lines for the table.
• Make configuration set tables page wide: Make the table as wide as the page.

Insert Anything into Report?
Yes. Table.

Class
rptgen_sl.csl_mdl_cfgset

See Also
Model Loop, System Loop

 Model Configuration Set

6-49

Model Loop
Loop on Simulink models and systems, as specified by child components

Description
This component loops on Simulink models and systems, as specified by child components. For
example, you can use a Model Loop with a child System Loop to report on the subsystems of the
specified system.

Consider making these components children of the Model Loop (although the Model Loop is not
necessarily required to be the immediate parent of a given component).

For conditional processing based of blocks, you can use the RptgenSL.getReportedBlock
function. For more information, see “Loop Context Functions” on page 4-90.

Models to Include
You can add a model to the list by clicking Add New Model to List. The following table shows the
buttons you can use to move a model up or down in the list, or to add or delete a model.

Button Action
Move a model up in the list.

Move a model down in the list.

Remove a model from the list.

Add a new model to the list.

Model Options
• Active: Includes a given model in the loop. This option is selected by default. Clearing this option

omits the model from the loop.

This option allows you to temporarily omit one or more models from a report.
• Model name: Specifies the model name.

• Current block diagram
• All open models
• All open libraries
• Block diagrams in current directory
• Custom block diagram: Selecting this option automatically sets the Starting system(s)
field $top to start in the model root system.

• %<VariableName>: For more information, see %<VariableName> Notation on the Text
component reference page in the MATLAB Report Generator documentation.

6 Components

6-50

• Traverse model: Specifies the systems to traverse.

• All systems in model
• Selected system(s) only
• Selected system(s) and ancestors
• Selected system(s) and children

• Look under masks: Specifies how to handle masks.

• Functional masks only
• No masks
• All masks
• Graphical masks only

For more information, see “Create Block Masks”.
• Follow library links: Specifies library links to include.

• Do not follow library links: Library links are treated as blocks.
• Include library links: Library links are treated as subsystems.
• Include unique library links: With multiple copies of the same library link in a system,

one is treated as a subsystem and the others as blocks.

For more information, see “Linked Blocks”.
• Model reference: Specifies whether to report on models referenced by a Model block. If you

want to report on referenced models, then you can control the depth of the model hierarchy and
whether to report on variant models.

• Do not follow Model blocks: Do not report on blocks contained in referenced models.
• Follow all Model blocks: Report on blocks contained in all models that any part of the

model hierarchy references.
• Follow Model blocks defined in current model: Report on blocks in models that the

currently selected model references.
• <Custom model reference depth>: Report on blocks in models that your specified level in

the model hierarchy references.
• Include all variants: Report on all variant models. To enable this option, set the Model

reference option to report on blocks in referenced models.
• Starting system(s): Specifies the system in which to start the loop. Available options depend on

the value that you select in the Traverse model option. Selecting any option other than All
systems in model for Traverse model activates the Starting system(s) option.

If you do not enter a model name in the Model name option, then select either Root model or
Current to specify where to start the loop.

If you specify a model name in the Model name option, then the Starting system(s) option
provides an edit box in which you can enter:

• The full path of a subsystem or subsystems
• $top to start the loop in the model root system
• $current to start the loop in the currently selected system

 Model Loop

6-51

Section Options
• Create section for each object in loop: Inserts a section in the generated report for each object

found in the loop.
• Display the object type in the section title: Inserts the object type automatically into the

section title in the generated report.
• Create link anchor for each object in loop: Create a link target for each model in the loop so

that other parts of the report can link to it.

Examples
Example 6.1. Generating Reports on Specified Systems and Their Subsystems

This example shows how to loop over a specified system and its subsystems in the sample model
sldemo_auto_climate_elec.

1 (Optional) To open the sldemo_auto_climate_elec model, at the MATLAB command prompt,
enter the following command:

openExample('sldemo_auto_climate_elec')

Explore the model to familiarize yourself with its subsystems.
2 Open the Report Explorer.
3 Create a report setup file by clicking File > New.
4 Save the report setup file by clicking File > Save As. Give it the name sldemo_auto_report.
5 Add a Chapter/Subsection component to the report setup file to include information about

model subsystems:

a In the Library pane in the middle, double-click Chapter/Subsection to add it to the report
setup file.

b For Title, choose Custom. In the title field, enter Description of subsystems.
c Add a Model Loop as a child of the Chapter/Subsection component. This loops over the

ClimateControlSystem system and its subsystems in the sldemo_auto_climate_elec
model:

i In the Library pane in the middle, double-click Model Loop to add it to the report setup
file. By default, the Report Explorer adds that component as a child of the Chapter/
Subsection component.

ii In the Model Loop properties pane, from the Model name selection list, select <Custom
block diagram> .

iii In the Model name field, delete the text <Custom block diagram>, and then enter
sldemo_auto_climate_elec.slx. Click any component in the report setup file to add
this model to the Models to include list.

iv In the Traverse model selection list, select Selected system(s) and children.
v In the Look under masks selection list, select All masks.
vi In the Model reference selection list, select Do not follow Model blocks.
vii In the Starting system(s) field, enter sldemo_auto_climate_elec/

ClimateControlSystem. Because you selected Selected system(s) and

6 Components

6-52

children for Traverse model, the Model Loop loops over
sldemo_auto_climate_elec/ClimateControlSystem and its subsystems.

viii Under Section Options, select the Create section for each object in loop check box.
Selecting this option creates separate sections in the generated report for each model
over which the component loops.

The Model Loop properties pane looks as follows.

6 Save the report by clicking File > Save.
7 Add a System Loop as a child of the Model Loop component.

a In the Library pane in the middle, double-click System Loop to add it to the report setup
file. By default, Model Explorer adds this component as a child of the Model Loop
component.

b In the System Loop properties pane, under Loop Options, select the Create section for
each object in loop check box. Selecting this option creates a section in the generated
report for each subsystem on which the component loops. Accept the default values for all
other fields.

8 Add a System Snapshot component as a child of the System Loop component. This step
creates snapshots of all the subsystems of ClimateControlSystem in the generated report. In
the Library pane in the middle, double-click System Snapshot. By default, Model Explorer adds
this component as a child of the System Loop component.

9 Save the report.

The report setup file hierarchy now looks as follows.

 Model Loop

6-53

10 Run the report by clicking File > Report.

The report loops on the system ClimateControlSystem of the sldemo_auto_climate_elec
model and all of its subsystems, as shown in the following Message List.

Below is an excerpt from the generated report.

6 Components

6-54

Example 6.2. Temporarily Omitting a Model from a Loop

This example shows how to use the Model Loop Active check box to temporarily omit a model from
the loop. This example uses the report setup file that you created in the Generating Reports on
Specified Systems and their Subsystems example above, sldemo_auto_report.rpt, and the f14
model, which is included with Simulink

1 In the Report Explorer, click File > Open, and then open sldemo_auto_report.rpt by double-
clicking it.

2 In the Outline pane on the left, click Model Loop Section 1 -
sldemo_auto_climate_elec.

3
In the Model Loop properties pane, click the button to add a model to the Models to
include list.

4 In the Model Loop properties pane, from the Model name selection list, select <Custom
block diagram>.

5 In the Model name field, delete the text <Custom block diagram> and enter
slrgex_f14.slx.

6 In the Look under masks selection list, select All masks.

 Model Loop

6-55

The Model Loop properties pane now looks as follows.

7 Save the report setup file.
8 Generate the report.

The report generation process loops over the specified systems in the slrgex_f14 and
sldemo_auto_climate_elec models, as shown in the following message box.

Below is an excerpt from the generated report.

6 Components

6-56

9 In the Models to include list, click slrgex_f14 to select it.
10 Clear the Active check box to omit slrgex_f14 model information from the generated report.
11 Rerun the report.

The report now includes information only on the sldemo_auto_climate_elec model, as shown
at the end of the previous example, Generating Reports on Specified Systems and their
Subsystems.

12 To reactivate the slrgex_f14 model, in the Model Loop Models to include list, select the
slrgex_f14 model and then select the Active check box.

Insert Anything into Report?
Yes, inserts a section if you select Create section for each object in loop and a link target if you
select Create link anchor for each object in loop.

Class
rptgen_sl.csl_mdl_loop

See Also
Block Loop, System Loop

 Model Loop

6-57

Model Simulation
Run current model with specified simulation parameters

Description
This component runs the current model using specified simulation parameters. Ensure that this
component has the Model Loop component as its parent.

For more information on simulation parameters, see “Configure Simulation Conditions”.

I/O Parameters
Use model's workspace I/O variable names

Use the names of the parameters specified in the Simulation Parameters dialog box.

The following options are available if you do not select the Use model's workspace I/O variable
names option:

• Time : Specifies a new variable name for the Time parameter.
• States: Specifies a new variable name for the States parameter.
• Output: Specifies a new variable name for the Output parameter.

Timespan
Use model's timespan values: Use the model's Start time and Stop time values, as specified in
the Solver tab in the Simulation Parameters dialog box.

The following options are available if you do not select the Use model's timespan values option:

• Start: Specifies a simulation starting time.
• Stop: Specifies a simulation ending time.

Note If you set the stop time of your model to inf (infinity) in Simulink or on this component
attribute page, Simulink Report Generator terminates the model simulation after 60 seconds.
Terminating the report prevents the report generation process from entering an infinite loop.

Simulation Options
• Compile model before simulation: Compiles the model before simulating, preserving scope

content. Select this option if:

• You use Simulink Coder Summary properties.
• You sort systems or blocks by simulation order.
• You use scope snapshots.

• Simulation status messages: Displays simulation status messages, or inserts them into the
report.

6 Components

6-58

• Display to command line: Sends messages to a command-line window.
• Display to Report Generator Message List: Sends messages to the Simulink Report

Generator message window.
• Insert into report: Includes messages in the report.

• Simulation parameters: Specifies simulation parameters.

Insert Anything into Report?
No.

Class
rptgen_sl.csl_mdl_sim

See Also
Model Loop

 Model Simulation

6-59

Object Loop
Run child components for Stateflow objects, and then insert table into report

Description
This component runs its child components for each Stateflow object and inserts a table into the
generated report.

For conditional processing of Stateflow objects, you can use the RptgenSF.getReportedObject
function. For more information, see “Loop Context Functions” on page 4-90.

Object Types
• Report on “Data” objects: Includes Stateflow data objects in the loop.
• Report on “Event” objects: Includes Stateflow event objects in the loop.
• Report on “Transition” objects: Includes Stateflow transition objects in the loop.
• Report on “Junction” objects: Includes Stateflow junction objects in the loop.
• Report on “Target” objects: Includes Stateflow target objects in the loop.
• Report on “Annotation” objects: Includes Stateflow note objects in the loop.
• Report on “Port” objects: Includes Stateflow port objects in the loop.

Loop Options
• Report depth: Specifies the level at which to loop:

• Local children only (Default). Reports only on children one level down.
• All objects. Reports on all Stateflow objects.

• Skip autogenerated charts under truth tables: Excludes autogenerated charts under truth
tables from the report.

• Remove objects which do not contain more information than a snapshot: Excludes objects
that contain only a snapshot.

• Search Stateflow: Reports on Stateflow charts with specified property name/property value
pairs.

Section Options
• Create section for each object in loop: Inserts a section in the generated report for each object

found in the loop.
• Display the object type in the section title: Automatically inserts the object type into the

section title in the generated report.
• Create link anchor for each object in loop: Create a link target for each Stateflow object in the

loop so that other parts of the report can link to it.

6 Components

6-60

Insert Anything into Report?
Yes, inserts a section if you select Create section for each object in loop and a link target if you
select Create link anchor for each object in loop.

Class
rptgen_sf.csf_obj_loop

See Also
Stateflow Filter, Stateflow Hierarchy Loop, Stateflow Hierarchy Loop, Simulink
Function System Loop

 Object Loop

6-61

Requirements Block Loop
Apply child components to blocks with requirements

Description
This component applies its child components to blocks with associated requirements.

Report On
• Automatic list from context: If selected, this option reports on all blocks in the current

context. The parent of the Requirements Block Loop component determines its context.

• Model Loop: Reports on all blocks with requirements in the current model.
• System Loop: Reports on all blocks with requirements in the current system.
• Signal Loop: Reports on all blocks with requirements connected to the current signal.

If the Requirements Block Loop does not have the Model Loop, System Loop, Signal
Loop, or Block Loop component as its parent, it reports on all blocks in all models.

• Custom - use block list: Reports on a list of blocks with specified requirements. Enter the full
paths of each block into this field.

Loop Options
• Sort blocks

Specify how to sort blocks (applied to each level in a model):

• Alphabetically by block name: Sorts blocks alphabetically by name.
• Alphabetically by system name: Sorts systems and subsystems alphabetically by name.

(Blocks in each system do not appear in alphabetical order).
• Alphabetically by full Simulink path: Sorts blocks alphabetically by Simulink path.
• By block type: Sorts blocks alphabetically by block type.
• By block depth: Sorts blocks by their depth in the model.
• By layout (left to right): Sorts blocks by their location in the model layout, by rows.

The block appearing the furthest toward the left top corner of the model is the anchor for the
row. The row contains all other blocks that overlap the horizontal area defined by the top and
bottom edges of the anchor block. The other rows use the same algorithm, using as the anchor
the next unreported block nearest the left top of the model.

6 Components

6-62

• By layout (top to bottom): Sorts blocks by their location in the model layout, by
columns. The block appearing the furthest toward the left top corner of the model is the anchor
for the column. The column contains all other blocks that overlap the vertical area defined by
the left and right edges of the anchor block. The other columns use the same algorithm, using
as the anchor the next unreported block nearest the left top of the model.

• By traversal order: Sorts blocks by traversal order.
• By simulation order: Sorts blocks by execution order.

• Search for Simulink property name/property value pairs: Reports on Simulink blocks with
specified property name/property value pairs that have associated requirements.

Section Options
• Create section for each object in loop: Inserts a section in the generated report for each block

found in the loop that has associated requirements.
• Display the object type in the section title: Inserts the object type automatically into the

section title in the generated report.
• Create link anchor for each object in loop: Create a link target for each requirement in the

loop so that other parts of the report can link to it.

Insert Anything into Report?
Yes, inserts a section if you select Create section for each object in loop and a link target if you
select Create link anchor for each object in loop.

Class
RptgenRMI.CBlockLoop

See Also
Missing Requirements Block Loop, Missing Requirements System Loop, Model Loop,
Requirements Documents Table, Requirements Signal Loop, Requirements Summary
Table, Requirements System Loop, Requirements Table

 Requirements Block Loop

6-63

Requirements Documents Table
Insert table of linked requirements documents

Description
This component creates a table that lists all requirements documents linked to model objects.

Table Options
• Show documents linked to

• Simulink and Stateflow objects: Inserts requirements documents linked to both
Simulink and Stateflow objects in the model.

• Simulink objects: Inserts requirements documents linked only to Simulink objects in the
model.

• Stateflow objects: Inserts requirements documents linked only to Stateflow objects in the
model.

• Table title: Specifies a title for the table.

• No title
• Model name (Default)
• Custom

Table Columns
• Replace document paths with links: Inserts links to requirements documents when possible.
• When replacing with links, note absolute vs. relative file path: Indicates absolute or relative
file paths when including links to requirements documents.

• Include document modification time: Includes the document modification information.
• Count # references to each document: Includes a count of the number of references to the

requirements document in the model.

Document References
• Replace file names with document IDs in the main body of the report: Includes shortened

IDs to identify requirements documents to simplify the requirements documents table.
• Retrieve full module path for DOORS links (requires login): This option applies only to

DOORS® requirements. Append the DOORS module ID to the module path in the DOORS database
if the module information is not stored with the model.

Insert Anything into Report?
Yes. Table.

6 Components

6-64

Class
RptgenRMI.ReqDocTable

See Also
Requirements Summary Table, Requirements Table

 Requirements Documents Table

6-65

Requirements Signal Loop
Apply all child components to signal groups with requirements

Description
The Requirements Signal Loop component applies all child components to signal groups that have
requirements in Signal Builder blocks.

Properties
• Create link anchor for each object in loop: Create a link target for each requirement in the

loop so that other parts of the report can link to it.
• Display the object type in the section title: Inserts the object name with requirements into the

section title.
• Create section for each object in loop: Creates a hyperlink to each object with requirements in

the loop.
• Section Type: Specifies the section type to insert. If you choose Automatic, the Simulink Report

Generator software determines the appropriate section type:

• Book
• Chapter
• Section 1
• Section 2
• Section 3
• Section 4
• Section 5
• Simple Section
• Automatic

Report On
Loops on signal groups in systems:

• Collect all Signal Builders: Processes all Signal Builder blocks, looking for signal groups
with requirements.

• Custom - use list: Processes all subsystems in the user-defined list. If a subsystem on the list
does not have requirements, the Simulink Report Generator software does not include it in the
report.

Insert Anything into Report?
Yes, inserts a section if you select Create section for each object in loop and a link target if you
select Create link anchor for each object in loop.

6 Components

6-66

Class
RptgenRMI.CSystemLoop

See Also
Missing Requirements Block Loop, Missing Requirements System Loop, Requirements
Block Loop, Requirements Documents Table, Requirements Summary Table,
Requirements System Loop, Requirements Table, Signal Loop

 Requirements Signal Loop

6-67

Requirements Summary Table
Properties of blocks, systems, or Stateflow objects with associated requirements

Description
This component displays properties of blocks, systems, or Stateflow objects with associated
requirements.

Object Type
Choose the object type to display in the generated report.

• Block (Default)
• System
• Stateflow

The selected object type affects the options available in the Property Columns pane.

Table Title
Specify a table title in the generated report.

• Automatic: Generates a title automatically from the parameter.
• Custom: Specifies a custom title.

Property Columns
• Object properties to include in the Requirements Summary Table appear in a list.

• To add a property:

1 Select the appropriate property level in the text box on the left.
2 In the text box on the right, select the property that you want to add and click Add.

• To delete a property, select the property name and click Delete.

%<SplitDialogParameters> is a unique property that you can specify for Requirements
Summary Tables where the object type is Block. This property generates multiple summary
tables, grouped by block type. Each Summary Table group contains the dialog box parameters for
that block.

Some entries in the list of available properties (such as Depth) are “virtual” properties that you
cannot access using the get_param command. The properties used for property/value filtering in
the block and System Loop components must be retrievable by the get_param. Therefore, you
cannot configure your Requirements Summary Table to report on all blocks of Depth == 2.

• Remove empty columns: Removes empty columns from the table.
• Transpose table: Changes the summary table rows into columns in the generated report, putting

the property names in the first column and the values in the other columns.

6 Components

6-68

Object Rows
• Insert anchor for each row: Inserts an anchor for each row in the Requirements Summary

Table.
• Report On

• Automatic list from context: Reports on all blocks in the current context. The parent of
this component determines its context.

• Custom - use block list: Reports on a list of blocks that you specify, and enters the block
names in the corresponding field. Specify the full path of each block.

Loop Options
Choose block sorting options and reporting options in this pane.

• Sort blocks: Use this option to select how to sort blocks (applied to each level in a model):

• Alphabetically by block name: Sorts blocks alphabetically by name.
• Alphabetically by system name. Sorts systems alphabetically. Lists blocks in each

system, but in no particular order.
• Alphabetically by full Simulink path: Sorts blocks alphabetically by Simulink path.
• By block type: Sorts blocks alphabetically by block type.
• By block depth: Sorts blocks by their depth in the model.
• By layout (left to right): Sorts blocks by their location in the model layout, by rows.

The block appearing the furthest toward the left top corner of the model is the anchor for the
row. The row contains all other blocks that overlap the horizontal area defined by the top and
bottom edges of the anchor block. The other rows use the same algorithm, using as the anchor
the next unreported block nearest the left top of the model.

• By layout (top to bottom): Sorts blocks by their location in the model layout, by
columns. The block appearing the furthest toward the left top corner of the model is the anchor
for the column. The column contains all other blocks that overlap the vertical area defined by
the left and right edges of the anchor block. The other columns use the same algorithm, using
as the anchor the next unreported block nearest the left top of the model.

• By traversal order: Sorts blocks by traversal order.
• By simulation order: Sorts blocks by execution order.

• Search for Simulink property name/property value pairs: Reports on blocks with specified
property name/property value pairs.

 Requirements Summary Table

6-69

Insert Anything into Report?
Yes. Table.

Class
RptgenRMI.CSummaryTable

See Also
Block Loop, Missing Requirements Block Loop, Missing Requirements System Loop,
Requirements Block Loop, Requirements Documents Table, Requirements Signal Loop,
Requirements System Loop, Requirements Table

6 Components

6-70

Requirements System Loop
Apply child components to systems with requirements

Description
This component applies its child components to systems with associated requirements.

Report On
• Loop on systems

• Select systems automatically: If selected, this option reports on all systems in the
current context. The parent of the component determines the context of this setting:

• Model Loop: Reports on systems in the current model.
• System Loop: Reports on the current system.
• Signal Loop: Reports on the parent system of the current signal.
• Block Loop: Reports on the parent system of the current block.

If the Requirement System Loop does not have any of these components as its parent,
selecting this option reports on all systems with requirements in all models.

• Custom - use system list: Reports on a list of specified systems. Enter the full path of
each system.

Loop Options
• Sort Systems:

• Alphabetically by system name (default): Sorts systems alphabetically by name.
• By number of blocks in system: Sorts systems by the number of blocks in the system.

The list displays systems by decreasing number of blocks; the system with the largest number
of blocks appears first in the list.

• By system depth: Sorts systems by their depth in the model.
• By traversal order: Sorts systems in the traversal order .

• Search for: Reports on Simulink blocks with specified property name/property value pairs.

Section Options
• Create section for each object in loop: Inserts a section in the generated report for each object

found in the loop.
• Display the object type in the section title: Inserts the object type automatically into the

section title in the generated report.
• Number sections by system hierarchy: Numbers sections in the generated report

hierarchically. Requires that Sort Systems be set to By traversal order.
• Create link anchor for each object in loop: Create a link target for each requirement in the

loop so that other parts of the report can link to it.

 Requirements System Loop

6-71

Insert Anything into Report?
Yes, inserts a section if you select Create section for each object in loop and a link target if you
select Create link anchor for each object in loop.

Class
RptgenRMI.CSystemLoop

See Also
Missing Requirements Block Loop, Missing Requirements System Loop, Requirements
Block Loop, Requirements Documents Table, Requirements Signal Loop, Requirements
Summary Table, Requirements Table, System Loop

6 Components

6-72

Requirements Table
Requirements links for current context

Description
This component creates a table that contains information from the Simulink Requirements software.
Objects can have multiple requirements. Each requirement is a row in the table.

Note If you want to generate a Microsoft Word report, to enable Simulink Requirements hyperlinks
in your report, at the MATLAB command prompt, enter:

rmipref('ReportNavUseMatlab',true)
rmipref('UnsecureHttpRequests',true)

Table Options
• Show requirements for current: Specifies the object type to display.

• Simulink object
• Stateflow object

• Table title: Specifies a title for the table.

• No title
• Object name (Default)
• Custom

Table Columns
• Description: Includes the object description in the table.
• Document name: Includes the report name in the table.
• Locations within document: Includes the locations of the object within the document in the

table.
• Requirement keyword: Includes the requirement keyword for the object in the table.

Insert Anything into Report?
Yes. Table.

Class
RptgenRMI.CReqTable

 Requirements Table

6-73

See Also
Missing Requirements Block Loop, Missing Requirements System Loop, Requirements
Block Loop, Requirements Documents Table, Requirements Signal Loop, Requirements
Summary Table, Requirements System Loop, Stateflow Automatic Table, Stateflow
Name

6 Components

6-74

Scope Snapshot
Insert images of scopes and XY graphs

Description
This component inserts images of scopes and XY graphs. Examples of blocks for which this
component inserts snapshots include:

• Scope (and Floating Scope) blocks and the XY Graph block (Simulink)
• Spectrum Analyzer and Time Scope blocks (DSP System Toolbox™)
• Video Viewer (Computer Vision Toolbox™)
• Blocks in the Simulink Control Design™ Linear Analysis Plots library (for example, the Bode Plot

block)

If the model has not been simulated, scopes are empty. For more information, see the Model
Simulation component reference page.

The parent component of the Scope Snapshot determines its behavior.

• Model Loop or no Simulink looping component: Includes all XY graphs and scopes in the current
model.

• System Loop: Includes all XY graphs and scopes in the current system.
• Block Loop: Includes the current block when it is an XY graph or scope.
• Signal Loop: Includes all XY graphs and scopes connected to the current signal.

If the Scope Snapshot does not have any of the Simulink looping components as its parent, it
includes all XY graphs and scopes in all open models.

Scope Options
• Report on closed scopes: Takes a snapshot of all scopes in context. This option forces closed

scopes to open when the report is generating.
• Autoscale time axis: Scales the Simulink scope time axis to include the entire log.

Print Options
• Image file format: Specifies the image file format (for example, JPEG, TIFF, etc.). Select

Automatic HG Format (the default) to choose the format best suited for the specified output
format automatically. Otherwise, choose an image format that your output viewer can read.

• Automatic HG Format (uses the Simulink file format selected in the Preferences dialog box)
• Bitmap (16m-color)
• Bitmap (256-color)
• Black and white encapsulated PostScript
• Black and white encapsulated PostScript (TIFF)

 Scope Snapshot

6-75

• Black and white encapsulated PostScript2
• Black and white encapsulated PostScript2 (TIFF)
• Black and white PostScript
• Black and white PostScript2
• Color encapsulated PostScript
• Color encapsulated PostScript (TIFF)
• Color encapsulated PostScript2
• Color encapsulated PostScript2 (TIFF)
• Color PostScript
• Color PostScript2
• JPEG high quality image
• JPEG medium quality image
• JPEG low quality image
• PNG 24-bit image
• TIFF - compressed
• TIFF - uncompressed
• Windows metafile

• Paper orientation:

• Landscape
• Portrait
• Rotated
• Use figure orientation: Uses the orientation for the figure, which you set with the

orient command.
• Full page image (PDF only): In PDF reports, scales images to fit the full page, minimizes

page margins, and maximizes the size of the image by using either a portrait or landscape
orientation.

For more information about paper orientation, see the orient reference page in the MATLAB
documentation.

• Image size: Specifies the size of the Handle Graphics figure snapshot in the form [w h] (width,
height). In the units text box, select one of the following options:

• Inches
• Centimeters
• Points
• Normalized

• Invert hardcopy: Inverts colors for printing; changes dark colors to light colors and light colors
to dark colors.

• Automatic: Automatically changes dark axes colors to light axes colors. If the axes color is a
light color, this option does not invert the color.

• Invert: Changes dark axes colors to light axes colors and light axes colors to dark axes colors.

6 Components

6-76

• Don't invert: Does not change the colors in the image on the screen for printing.
• Use figure's InvertHardcopy setting: Uses the InvertHardcopy property set in the

Handle Graphics image.
• Make figure background transparent: Makes the image background transparent.

Display Options
• Scaling: Controls size of the image, as displayed in a browser. Making an image larger using this

option does not affect the storage size of the image, but the quality of the displayed image may
decrease as you increase or decrease the size of the displayed image.

Generally, to achieve the best and most predictable display results, use the default setting of Use
image size.

• Use image size: Causes the image to appear the same size in the report as on screen
(default).

• Fixed size: Specifies the number and type of units.
• Zoom: Specifies the percentage, maximum size, and units of measure.

• Size: Specifies the size of the snapshot in the form w h (width, height). This field is active only if
you choose Fixed size from the Scaling selection list.

• Max size: Specifies the maximum size of the snapshot in the form w h (width, height). This field is
active only if you choose Zoom from the Scaling selection list.

• Units: Specifies the units for the size of the snapshot. This field is active only if you choose Zoom
or Fixed size in the Image size list box.

• Alignment: Only reports in PDF or RTF format support this property.

• Auto
• Right
• Left
• Center

• Title: Specifies a title for the snapshot figure.

• Block name: Uses the block name as the title.
• Full Simulink path name: Uses the Simulink path as the title.
• Custom: Specifies a custom title.

• Caption: Select or enter a short text description for the snapshot figure.

• No caption
• Automatic (use block description). Uses the Simulink block description as the

caption.
• Custom. Specifies a short text description for the snapshot figure.

Insert Anything into Report?
Yes. Image.

 Scope Snapshot

6-77

Class
rptgen_sl.csl_blk_scope

See Also
Block Loop, Model Loop, Signal Loop, System Loop

6 Components

6-78

Signal Loop
Run child components for each signal contained in current system, model, or block

Description
The Signal Loop component runs its child components for each signal contained in the current
system, model, or block. The parent component determines the behavior of this component.

• Model Loop: Loops on all signals in the current model.
• System Loop: Loops on all signals in the current system. Choose not to report on the following

types of signals by clearing the corresponding option in the Section options area:

• Include system input signals
• Include system output signals
• Include system internal signals

• Signal Loop: Loops on the current signal.
• Block Loop : Loops on all signals connected to the current block. Choose not to report on the

following types of signals by clearing the corresponding option in the Section options area:

• Include block input signals
• Include block output signals

• If the Signal Loop does not have a looping component as its parent, it loops on all signals in all
models. Choose not to report on the following types of signals by clearing the corresponding
option in the Section options area:

• Include block input signals
• Include block output signals
• System input signals
• System output signals
• System internal signals

For conditional processing of signals, you can use the RptgenSL.getReportedSignal function. For
more information, see “Loop Context Functions” on page 4-90.

Select Signals
• Include block input signals: Loops on signals that feed into blocks. This option is valid only

when the parent component of this component is a Block Loop.
• Include block output signals: Loops on signals that leave the block. This option is valid only

when the parent component of this component is a Block Loop.
• Include system input signals: Loops on signals coming from inports. This option is valid only

when the parent component of this component is a System Loop.
• Include system internal signals: Loops on system internal signals. This option is valid only

when the parent component of this component is a System Loop.

 Signal Loop

6-79

• Include system output signals: Loops on signals going to outports. This option is valid only
when the parent component of this component is a System Loop.

• Sort signals: Specifies how to sort signals:

• Alphabetically by signal name: Sorts signals alphabetically by name.
• Alphabetically by signal name (exclude empty): Sorts signals alphabetically by

name.
• Alphabetically by system name: Sorts alphabetically by parent system names. Lists

signals in each system, but in no particular order.
• By signal depth: Sorts signals by their depth in the model.

Section Options
• Create section for each object in loop: Inserts a section in the generated report for each object

found in the loop.
• Display the object type in the section title: Automatically inserts the object type into the

section title in the generated report.
• Create link anchor for each object in loop: Create a link target for each signal in the loop so

that other parts of the report can link to it.

Insert Anything into Report?
Yes, inserts a section if you select Create section for each object in loop and a link target if you
select Create link anchor for each object in loop.

Class
rptgen_sl.csl_sig_loop

See Also
Block Loop, Model Loop, System Loop

6 Components

6-80

Simulink Automatic Table
Insert two-column table with information on selected model, system, signal, or block

Description
This component inserts a two-column table that contains details for the selected model, system,
signal, or block into a generated report.

Options
• Show current: Modeling object to specify properties for.

• Automatic: Uses the context of the parent loop.
• Model
• System
• Block
• Annotation

• Properties list: Specifies whether to have Report Explorer select properties automatically or to
list the properties to report on.

• Determine properties automatically: Let the Report Explorer automatically select the
properties to report.

Modeling Component Selected in the
Show current Field

Listed Properties

Model Description
System Description
Block Block parameter dialog box prompt

properties
Annotation Text
Signal Description

• Show properties: Specify a list of properties to report. Enter the names of object properties
that you want the report to include for the modeling object you specified in the Show current
field. Use this option to display properties that the Report Explorer does not include
automatically.

Property names often differ from the Simulink dialog box prompts. Refer to the Simulink
documentation to determine property names for blocks, signals, and other modeling objects.
You can also use the MATLAB get command to determine the property names of an object. For
example, to determine the property names of the block currently selected in a model, enter the
following at the MATLAB command line:

get(get_param(gcb,'Handle'))
• Show full path name: Displays the full path of the selected Simulink model.
• Display property names as prompts: Displays property names as prompts in the generated

report. The report includes the dialog box string instead of the underlying code property.

 Simulink Automatic Table

6-81

Display Options
• Table title: Displays a table title in the generated report.

• Name: Automatically generates a title from the parameter.
• Custom: Specifies a custom title.
• No title: Does not include a title.

• Header row: Select a header row for the table in the generated report.

• No header: Includes no header row.
• Type and Name: Includes a header row with columns for name and object type.
• Custom: Includes a custom header.

• Don't display empty values: Excludes empty parameters in the generated report.

Insert Anything into Report?
Yes. Table.

Class
rptgen_sl.csl_auto_table

See Also
Block Loop, Model Loop, Signal Loop, System Loop

6 Components

6-82

Simulink Data Dictionary
Report Simulink data dictionary information

Description
This component reports on the data dictionary currently active in the data dictionary loop specified
by the Data Dictionary Loop component. Include this component as a child of a Simulink Data
Dictionary Loop component.

Presentation Format
The report for a data dictionary includes a table that summarizes the properties of each variable in
the dictionary. The report also includes a dictionary details section that fully reports the properties
and value of each variable in the dictionary. If you use a conversion template to generate the report,
you can specify template-defined styles for the summary table title and the summary table.

To use a conversion template, in the Report Options dialog box, set File format to one of the from
template options, for example, Direct PDF (from template).

• Table title style name: Specifies the style to use for the data dictionary table title. To specify the
default style name rgTableTitle, which the default conversion template defines, use Auto. To
specify a custom style defined in a custom template that you use with this report, select Specify.

• Table style name: Specifies the style to use for the data dictionary table. To specify the default
table style name rgUnruledTable, which is the default conversion template defines, use Auto.
To specify a custom style defined in a custom template that you use with this report, select
Specify.

Options
You can specify whether to include dictionaries referenced by a dictionary and how to present the
referenced information.

• Include referenced data dictionaries: Includes information from the data dictionaries that the
dictionary currently active in the data dictionary loop specified by the Data Dictionary Loop
component references. The referenced information displays at the end of the table for the
referencing data dictionary, unless you select Make separate table for each referenced
dictionary.

• Make separate table for each referenced dictionary: If you select Include referenced data
dictionaries, display a table for each referenced data dictionary.

• Include referenced dictionaries list: If you select Include referenced data dictionaries,
following the referencing data dictionary summary table, include a list of the referenced data
dictionaries.

Sections to Report
You can specify the data dictionary sections to include data for.

 Simulink Data Dictionary

6-83

• Design Data (default): Include information from the Design Data section of the current data
dictionary.

• Configuration: Include information from the Configuration section of the current data dictionary.
• Other Data: Include information from the Other Data section of the current data dictionary.

Fields to Report
The current dictionary summary table lists properties of the variables that it contains. The table
always includes the variable name and value. In addition, it optionally includes these properties:

• Data type
• Last modified
• Last modified by
• Status
• Referenced dictionary that contains data

Example
Suppose that you configure an HTML report with the Simulink Data Dictionary Loop component.

Then you configure the Simulink Data Dictionary component.

6 Components

6-84

Here is the resulting report.

 Simulink Data Dictionary

6-85

Class
rptgen_sl.csl_data_dictionary

See Also
Simulink Data Dictionary Loop

6 Components

6-86

Simulink Data Dictionary Loop
Run Simulink Data Dictionary child component for each Simulink data dictionary in specified context

Description
This component runs the Simulink Data Dictionary child component for each Simulink data dictionary
in the specified context. You can specify whether to have each data dictionary in the loop.

Report on
Specify the data dictionaries to report on.

• Dictionaries in MATLAB path: Report on all data dictionaries on the MATLAB path. If you
select Include child data dictionaries, then also reports on child data dictionaries whose parent
is on the MATLAB path.

• Dictionaries in list: Report on all data dictionaries that you specify in the text box. Enter
data dictionary names, separated by either a comma or semicolon. You can use multiple lines. If
you do not specify the full path to a data dictionary, the loop includes that data dictionary only if
the dictionary is on the MATLAB path.

Use a Summary Table component to show annotation objects in reports. Each Summary Table
component creates a single table with each reported annotation on a single row of the table.

Section Options
Create section for each object in loop: Create a separate chapter for each data dictionary.

Example
Suppose you have an HTML report with the Simulink Data Dictionary Loop component configured
like this:

 Simulink Data Dictionary Loop

6-87

Then you configure the Simulink Data Dictionary component like this:

The resulting report looks like this:

6 Components

6-88

Class
rptgen_sl.csl_data_dict_loop

See Also
Simulink Data Dictionary

 Simulink Data Dictionary Loop

6-89

Simulink Dialog Snapshot
Insert snapshots of Simulink editor dialog boxes

Description
This component takes snapshots of Simulink editor dialog boxes. You use it to display the current
settings associated with an object or document the appearance of your custom mask dialog boxes.

The parent component of this component determines the behavior of this component.

• Block Loop: Documents the dialog box of the current reported block.
• System Loop: Documents the dialog box of the current reported system.

Format
• Image file format: Specifies the format for the snapshot image file. The automatic format

chooses BMP format for PDF files, and PNG for other formats.
• Show all tabs: Automatically generates images for all the tabs for the dialog box. If you clear this

check box, Simulink Report Generator creates an image of only the first tab.

Display Options
• Scaling: Controls size of the image, as displayed in a browser. Making an image larger using this

option does not affect the storage size of the image, but the quality of the displayed image may
decrease as you increase or decrease the size of the displayed image.

Generally, to achieve the best and most predictable display results, use the default setting of Use
image size.

• Use image size: Causes the image to appear the same size in the report as on screen
(default).

• Fixed size: Specifies the number and type of units.
• Zoom: Specifies the percentage, maximum size, and units of measure.

• Size: Specifies the size of the snapshot in the format w h (width, height). This field is active only if
you choose Fixed size from the Scaling selection list.

• Max size: Specifies the maximum size of the snapshot in the format w h (width, height). This field
is active only if you choose Zoom from the Scaling selection list.

• Units: Specifies the units for the size of the snapshot. This field is active only if you choose Zoom
or Fixed size in the Image size list box.

• Alignment: Only reports in PDF or RTF format support this property.

• Auto
• Right
• Left
• Center

6 Components

6-90

• Title: Specifies text to appear above the snapshot.
• Caption: Specifies text to appear under the snapshot.

Insert Anything into Report?
Yes. Snapshot.

Class
rptgen_sl.CDialogSnapshot

See Also
Block Loop, System Loop

 Simulink Dialog Snapshot

6-91

Simulink Function System Loop
Report on Simulink functions specified in a Stateflow loop

Description
This component loops over the Simulink systems that implement a Stateflow Simulink Function
object, including the function’s parent system, subsystems, and optionally the systems that implement
Simulink Functions nested in this function. This component must be a descendant of a State Loop
component that is descendant of a Chart Loop component. This component executes when the
current object in the state loop is a Simulink Function. For example, this structure creates a snapshot
of each Simulink Function in a chart followed by snapshots of the systems that implement the
function:

Report On
Include subsystems in nested Simulink functions: Specifies whether to include subsystems in
nested Simulink functions. By default, this option is enabled.

Loop Options
• Sort Systems: Specifies how to sort systems.

• Alphabetically by system name (default): Sorts systems alphabetically by name.
• By number of blocks in system: Sorts systems by number of blocks. The list shows

systems by decreasing number of blocks; that is, the system with the largest number of blocks
appears first in the list.

• By system depth: Sorts systems by their depth in the model.
• By traversal order: Sorts systems in traversal order.

• Search for: Reports only on the Subsystem blocks with the specified property name-value pairs.
To enable searching, click the check box. In the first row of the property name and property value
table, click inside the edit box, delete the existing text, and type the property name and value.

To find property names for Subsystem blocks, see the Programmatic Use sections for the
parameters in Subsystem, Atomic Subsystem, CodeReuse Subsystem or select a Subsystem block
in the model and enter this code at the MATLAB command line:

get(gcbh)

6 Components

6-92

Section Options
• Create section for each object in loop: Inserts a section in the generated report for each object

found in the loop.
• Display the object type in the section title: Inserts the object type automatically into the

section title in the generated report.
• Number sections by system hierarchy: Hierarchically numbers sections in the generated

report. Requires that Sort Systems be set to By traversal order.
• Create link anchor for each object in loop: Create a link target for each Simulink Function

system in the loop so that other parts of the report can link to it.

Insert Anything into Report?
Yes, inserts a section if you select Create section for each object in loop and a link target if you
select Create link anchor for each object in loop.

Class
rptgen_sl.csl_sys_loop

See Also
Object Loop, State Loop, Chart Loop, System Loop, Block Loop, Model Loop, Signal
Loop

 Simulink Function System Loop

6-93

Simulink Functions and Variables
Create table that displays workspace variables and MATLAB functions used by reported blocks in
Simulink models

Description
This component creates a table that displays workspace variables and MATLAB functions used by
blocks in a Simulink model. The Model Loop component specifies the current model and systems in
which the blocks appear. For example, suppose a Simulink Gain block has a string cos(x) instead of
a number. The Simulink software looks for a variable x in the workspace and uses the cos function.

Functions
• Include table of functions: Includes a table of Simulink functions in the generated report.
• Table Title: Specifies a title for the table in the generated report:

• Automatic: Generates a title automatically from the parameter.
• Custom: Specifies a custom title.

• Parent block: Includes a column in the table that includes the name of the block, which contains
the reported variable.

• Calling string: Includes the MATLAB code that calls the reported variable.
• Include fixed-point functions (sfix, ufix, ...): Includes Fixed-Point Designer functions in the

report.

Variables
• Include table of variables: Includes a table of Simulink variables in the generated report.
• Table title: Specifies a title for the table in the generated report.

• Automatic: Generates a title automatically from the parameter.
• Custom: Specifies a custom title.

• Include Workspace I/O parameters: Reports on variables that contain parameters with time
vectors and state matrices. Set these parameters in the Workspace I/O pane in the Simulation
Parameters dialog box in a Simulink model.

In the following table, if any of the entries in the first column are on, the component looks for the
variable listed in the second column. If the component finds the variable in the workspace, it
includes it in the report.

Parameter name Variable name
LoadExternalInput ExternalInput
SaveTime TimeSaveName
SaveState StateSaveName
SaveOutput OutputSaveName

6 Components

6-94

Parameter name Variable name
LoadInitialState InitialState
SaveFinalState FinalStateName

• Parent block: Includes the name of the block that contains the reported variable.
• Calling string: Includes the MATLAB code that calls the reported variable.
• Size of variable: Includes the size of the reported variable.
• Class of variable: Includes the variable class to which the reported variable belongs.
• Memory size: Includes the amount of memory in bytes that the reported variable needs.
• Value in workspace: Includes the value of the reported variable.

Large arrays may appear as [MxN CLASS]. For example, if you have a 300-by-200 double array, it
appears in the report as [300x200 DOUBLE].

• Storage class: Include the storage class of the reported variable.

The title of this column is Storage Class. This option looks at the model's TunableVars property
to see if any of the model variables specify their storage class. If you specify the storage class,
TunableVarsStorageClass and TunableVarsTypeQualifier appear in a table column in the
model variables table.

The column entries are TunableVarsStorageClass (TunableVarsTypeQualifier) when
TunableVarsTypeQualifier is not empty. If TunableVarsTypeQualifier is empty, the
column entry is TunableVarsStorageClass.

Values for TunableVarsStorageClass include:

• Exported Global
• Auto
• ImportedExtern
• ImportedExtern Pointer

• Data object properties: For variables that are Simulink.Parameter data objects, includes the
values of the object properties that you list in the edit box.

Example

This table is an example of a table created by the Model Variables component. This Property Table
reports on the variables in the Controller in the f14 model.

Variable Name Parent Blocks Calling
String

Value

Ka f14/Controller/Gain3 Ka 0.677
Kf f14/Controller/Gain Kf -1.746
Ki f14/Controller/Proportional plus

integral compensator
[Ki] -3.864

Kq f14/Controller/Gain2 Kq 0.8156

 Simulink Functions and Variables

6-95

Insert Anything into Report?
Yes. Table.

Class
rptgen_sl.csl_obj_fun_var

See Also
Block Loop, Model Loop, Signal Loop, System Loop

6 Components

6-96

Simulink Library Information
Insert table that lists library links in current model, system, or block

Description
This component inserts a table that lists library links in the current model, system, or block.

Table Columns
• Block: Includes the Simulink block name in the generated table.
• Library: Includes the Simulink library root name in the generated table.
• Reference block: Includes the Simulink reference block name in the generated table.
• Link status: Includes the link status in the generated table.

Display Options
• Title: Specifies a title for the generated report.
• Sort table by:

• Block: Sorts the table by block name.
• Library: Sorts the table by library name.
• Reference Block: Sorts the table by reference block name.
• Link Status: Sorts the table by link status.

• Merge repeated rows: Merges sorted rows in the generated table.

Example

This example uses the aero_guidance model, which you can open by using openExample.

openExample('aero_guidance');

If you set Sort table by to Reference Block and clear the Merge repeated rows check box,
Report Explorer generates this table for the aero_guidance model.

 Simulink Library Information

6-97

If you select Merge repeated rows, Report Explorer collapses the rows in the Block column so that
each row in the Reference Block column is unique.

6 Components

6-98

Insert Anything Into Report?
Yes. Table.

Class
rptgen_sl.CLibinfo

See Also
Block Loop, Model Loop, System Loop

 Simulink Library Information

6-99

Simulink Linking Anchor
Designate locations to which links point

Description
This component designates a location to which links point. Use the Model Loop, System Loop,
Block Loop, or Signal Loop component as the parent component for this component.

Properties
• Insert text: Specifies text to appear after the linking anchor.
• Link from current: Sets the current model, system, block, or signal as the linking anchor.

• Automatic: Automatically selects the appropriate model, system, block, or signal as a linking
anchor. If the Model Loop component is the parent component, the linking anchor is set on
the current model. Similarly, if the Block Loop or Signal Loop is the parent component, the
linking anchor is inserted for the current system, block, or signal, respectively.

• Model: Sets the linking anchor to the current model.
• System: Sets the linking anchor to the current system.
• Block: Sets the linking anchor to the current block.
• Annotation: Sets the linking anchor to the current annotation.
• Signal: Sets the linking anchor to the current signal.

Note Use only one anchor per report each object. For more information, see the Simulink
Summary Table component reference page.

Insert Anything into Report?
Yes. A link, and possibly text, depending on attribute choices.

Class
rptgen_sl.csl_obj_anchor

See Also
Block Loop, Model Loop, Signal Loop, System Loop

6 Components

6-100

Simulink Name
Insert name of a Simulink model, system, block, or signal into report

Description
This component inserts the name of a Simulink model, system, block, or signal into the report.

Using this component as the first child component of a Chapter/Subsection component allows the
current Simulink model, system block, or signal name to be the chapter or section title.

Properties
• Object type

• Automatic: Automatically selects the appropriate model, system, block, or signal name as the
Simulink object name to include in the report. If the Model Loop component is the parent
component, the object name is the current model name. If the System Loop, Block Loop, or
Signal Loop is the parent component, then the object name is the name of the current system,
block, or signal, respectively.

• Model: Includes the current model name in the report.
• System: Includes the current system name in the report.
• Block: Includes the current block name in the report.
• Signal: Includes the current signal name in the report. If the signal name is empty, the signal

<handle>, which is a unique numerical identifier to that signal, appears in the report.
• Annotation: Includes the current annotation name in the report.

• Display name as: Display the Simulink object name in the report.

• Name: For example, f14
• Type Name: For example, Model f14
• Type - Name: For example, Model - f14
• Type: Name: For example, Model: f14

• Show full path name: Displays the full path of a system or block. Choosing this option for a block
causes the Simulink block name to appear as <Model Name>/<System Name>/<Block Name>.

Note This option is not available for models or signals.

Insert Anything into Report?
Yes. Text.

Class
rptgen_sl.csl_obj_name

 Simulink Name

6-101

See Also
Chapter/Subsection

6 Components

6-102

Simulink Property
Insert property name/property value pair for current Simulink model, system, block, or signal

Description
This component inserts a single property name/property value pair for the current Simulink model,
system, block, or signal.

Simulink Object and Parameter
• Object type: Specifies the Simulink object type to include in the report.

• System
• Model
• Block
• Signal
• Annotation: Reports annotation content as plain text for web (HTML), Acrobat (PDF), and

Word Document (rtf) output types or as formatted text for other output types.
• System parameter name: Specifies a Simulink parameter name to include in the generated

report:

• If you select Model for Object type, this option appears as Model parameter name.
• If you select Block for Object type, this option appears as Block parameter name.
• If you select Signal for Object type, this option appears as Signal parameter name.
• If you select Annotation for Object type, the Signal parameter name field does not appear.

Display Options
These display options appear for every Object type, except Annotation.

• Title: Choose a title to display in the generated report:

• Automatic: Uses the parameter name as the title.
• Custom: Specifies a custom title.
• None: Uses no title.

• Array size limit: Limits the width of the display in the generated report. Units are in pixels. The
size limit for a given table is the hypotenuse of the table width and height [sqrt(w^2+h^2)]. The
size limit for text is the number of characters squared. If you exceed the size limit, the variable
appears in condensed form. Setting a size limit of 0 displays the variable in full, regardless of its
size.

• Object depth limit: Specifies the maximum number of nesting levels to report on for a variable
value

• Object count limit: Specifies the maximum number of nested objects to report on for a variable
value

 Simulink Property

6-103

• Display as: Specifies a display style.

• Table or paragraph depending on data type: Displays as a table or paragraph.
• Table: Displays as a table.
• Paragraph: Displays as a text paragraph.
• Inline text: Displays inline with the surrounding text.

• Show variable type in headings: Show data type of this variable in the title of its report.
• Show variable table grids: Show grid lines for the table used to report the value of this variable.
• Make variable table page wide: Make the variable table as wide as the page on which the table

appears.
• Omit if value is empty: Exclude empty parameters from the generated report.
• Omit if property default value: Exclude object property from the report if that property uses

the default value.

Insert Anything into Report?
Yes. Text.

Class
rptgen_sl.csl_property

See Also
Block Loop, Model Loop, System Loop

6 Components

6-104

Simulink Property Table
Insert table that reports on model-level property name/property value pairs

Description
This component inserts a table that reports on model-level property name/property value pairs.

Properties
Select Object: Choose the object for the Property Table in the generated report.

• Model
• System
• Block
• Signal
• Annotation

For more information about selecting object types in Property Table components, see “Select Object
Types”.

Table
Select a preset table, which is already formatted and set up, in the preset table list in the upper-left
corner of the attributes page.

• Preset table: Specifies the type of the object property table.

• Default
• Simulation Parameters
• Version Information
• Simulink Coder Information
• Summary (req. Simulink Coder)
• Blank 4x4

To apply a preset table, select the table and click Apply.
• Split property/value cells: Split property name/property value pairs into separate cells. For the

property name and property value to appear in adjacent horizontal cells, select the Split
property/value cells check box. In this case, the table is in split mode, so there is only one
property name/property value pair per cell. If there is more than one name/property pair in a cell,
only the first pair appears in the report. All subsequent pairs are ignored.

For the property name and property value to appear together in one cell, clear the Split
property/value cells check box. That setting specifies nonsplit mode. Nonsplit mode supports
more than one property name/property value pair and text per cell.

Before switching from nonsplit mode to split mode, make sure that there is only one property
name/property value pair per table cell. If there is more than one property name/property value

 Simulink Property Table

6-105

pair or text per cell, only the first property name/property value pair appears in the report. The
report omits subsequent pairs and text.

• Display outer border: Displays the outer border of the table in the generated report.
• Table Cells: Specifies table properties to modify. The selection in this pane affects available fields

in the Cell Properties pane.

Cell Properties
The options in this pane depend on the object selected in the Table Cells pane. If you select %<Name>
Information, only Contents and Show appear. If you select any other object in the Table Cells
pane, Lower border and Right border display.

• Contents: Enables you to change the contents of the table cell selected in the Table Cells pane.
• Show as: Specifies the format for the contents of the table cell.

• Value
• Property Value
• PROPERTY Value
• Property: Value
• PROPERTY: Value
• Property - Value
• PROPERTY - Value

• Alignment: Specifies the alignment of the contents of the selected table cell in the Table Cells
pane.

• Left
• Center
• Right
• Double justified

• Lower border: Displays the lower border of the table in the generated report.
• Right border: Displays the right border of the table in the generated report.

Creating Custom Tables

To create a custom table, edit a preset table, such as the Blank 4x4 table. Add and delete rows and
add properties. To open the Edit Table dialog box, click Edit.

For more information on creating custom property tables, see “Property Table Components”.

If the Simulink Coder software is not installed, Summary (req Simulink Coder) does not appear
in this list. If you are using a report setup file that contains a summary property, the property name
appears in the report, but the property value does not.

Example

The following report displays information on the f14 model using the Simulation Parameters
preset table.

6 Components

6-106

Solver ode45 ZeroCross on StartTime 0.0 StopTime 60
RelTol 1e-4 AbsTol 1e-6 Refine 1
InitialStep auto FixedStep auto MaxStep auto
LimitMaxRows off MaxRows 1000 Decimation 1

Insert Anything into Report?
Yes. Table.

Class
rptgen_sl.csl_prop_table

See Also
Model Loop, Signal Loop, System Loop

 Simulink Property Table

6-107

Simulink Sample Time
Insert title of Simulink sample time into report

Description
This component inserts a title for a Simulink sample time into the report.

Properties
• Table Options

• Title: Specifies a title for the table in the generated report.
• Grid lines: Show grid lines for the table.

Insert Anything into Report?
Yes. Table.

Class
rptgen_sl.CSampleTime

See Also
Chapter/Subsection

6 Components

6-108

Simulink Summary Table
Properties or parameters of specified Simulink models, systems, blocks, or signals in table

Description
This component displays properties or parameters of selected Simulink models, systems, blocks, or
signals in a table.

Object type
Choose the object type to display in the generated report.

• Block (Default)
• Model
• System
• Signal
• Annotation

The selected object type affects the options available in the Property Columns pane.

Table title
Choose a title to appear in the generated report:

• Automatic: Automatically generates a title from the parameter.
• Custom: Specifies a custom title.

Property Columns
This pane displays object properties to include in the Summary Table in the generated report.

• To add a property:

1 Select the appropriate property level in the text box on the left.
2 In the text box on the right, select the property that you want to add and click Add.

• To delete a property, select the property name and click Delete.

The Parent property column displays only the name of the parent system. To display the full path of
the parent system, specify the property as parent with a lowercase p.

%<SplitDialogParameters> is a unique property for Simulink Summary Tables, where the object
type is Block. This property generates multiple summary tables, organized by block type. Each
Summary Table group contains the dialog box parameters for that block.

Some entries in the list of available properties (such as Depth) are “virtual” properties that you
cannot access using the get_param command. The properties used for property/value filtering in the
block and System Loop components must be retrievable by the get_param. Therefore, you cannot
configure your Summary Table to report on all blocks of Depth == 2.

 Simulink Summary Table

6-109

You can create multiple values for a property in a Simulink Summary Table. For example, to
report on blocks of type Inport, Outport and Constant:

1 Check the Search for Simulink property name/property value pairs box.
2 Make sure that you set Property Name to BlockType.
3 Type the following text into the Property Value field:

\<(Inport|Outport|Constant)\>

Remove empty columns: Removes empty columns from the table.

Transpose table: Changes the summary table rows into columns in the generated report, putting the
property names in the first column and the values in the other columns.

Object Rows
• Insert anchor for each row: Inserts an anchor for each row in the summary table.
• Report On:

• Automatic list from context: Reports on all blocks in the current context, as set by the
parent component.

• Custom - use block list: Reports on a list of specified blocks. Specify the full path of
each block.

Loop Options
• Sort blocks

• Alphabetically by block name: Sorts blocks alphabetically by name.
• Alphabetically by system name: Sorts systems alphabetically by name. Lists blocks in

each system, but in no particular order.
• Alphabetically by full Simulink path: Sorts blocks alphabetically by Simulink path.
• By block type: Sorts blocks alphabetically by block type.
• By block depth: Sorts blocks by their depth in the model.
• By layout (left to right): Sorts blocks by their location in the model layout, by rows.

The block appearing the furthest toward the left top corner of the model is the anchor for the
row. The row contains all other blocks that overlap the horizontal area defined by the top and
bottom edges of the anchor block. The other rows use the same algorithm, using as the anchor
the next unreported block nearest the left top of the model.

6 Components

6-110

• By layout (top to bottom): Sorts blocks by their location in the model layout, by
columns. The block appearing the furthest toward the left top corner of the model is the anchor
for the column. The column contains all other blocks that overlap the vertical area defined by
the left and right edges of the anchor block. The other columns use the same algorithm, using
as the anchor the next unreported block nearest the left top of the model.

• By traversal order: Sorts blocks by traversal order.
• By simulation order: Sorts blocks by execution order.
• %<VariableName>: Inserts the value of a variable from the MATLAB workspace. The %<>

notation can denote a string or cell array. For more information, see %<VariableName>
Notation on the Text component reference page.

• Search for Simulink property name/property value pairs: Reports on blocks with specified
property name/property value pairs.

Example

Specify the following options to generate a Summary Table in a report for on the model f14:

• Sort on systems by system depth.
• Include the system parameters Name and Block in the table.

The following table appears in the report.

Name Blocks
f14 u, Actuator Model, Aircraft Dynamics Model, Angle of Attack, Controller,

Dryden Wind Gust Models, Gain, Gain1, Gain2, Gain5, More Info, More
Info1, Nz pilot calculation, Pilot, Pilot G force Scope, Stick Input, Sum,
Sum1, alpha (rad), Nz Pilot (g)

Aircraft Dynamics Model Elevator Deflection d (deg), Vertical Gust wGust (ft/sec), Rotary Gust
qGust (rad/sec), Gain3, Gain4, Gain5, Gain6, Sum1, Sum2, Transfer Fcn.1,
Transfer Fcn.2, Vertical Velocity w (ft/s), Pitch Rate q (rad/s)

Controller Stick Input (in), alpha (rad), q (rad/s), Alpha-sensor Low-pass Filter, Gain,
Gain2, Gain3, Pitch Rate Lead Filter, Proportional plus integral
compensator, Stick Prefilter, Sum, Sum1, Sum2, Elevator Command (deg)

Dryden Wind Gust Models Band-Limited White Noise, Q-gust model, W-gust model, Wg, Qg
More Info None
More Info1 None
Nz pilot calculation w, q, Constant, Derivative, Derivative1, Gain1, Gain2, Product, Sum1, Pilot

g force (g)

Insert Anything into Report?
Yes. Table.

Class
rptgen_sl.csl_summ_table

 Simulink Summary Table

6-111

See Also
Block Loop, Model Loop, Signal Loop, System LoopSimulink Function System Loop

6 Components

6-112

Simulink Test Suite Traceability Table
Insert a table that links a Simulink test suite to requirements

Description
This component inserts a table into the report. The table links a Simulink test suite to corresponding
requirements. This component reports on the currently open Simulink test suite. Place this
component inside a section, paragraph, or table component.

To use this component, your report setup must include Eval statements that open a Simulink test
suite or determine the test suite that is open.

Table Options
Specify information about the table this component inserts.

• Table title: Specify the table title.

• No title — Do not include a table title.
• Object name — Use the name of the Simulink test suite in the title.
• Custom — Specify your own table title.

Table Columns
Specify the table columns that you want to include in the report. The Document name, Locations
within document, and Requirement keyword check boxes correspond to properties on the
Requirements Management Interface Link Editor dialog box.

• Description — Include the description of the requirement. The description helps you to identify
the requirement the table is linking to. Leave this box selected to improve the readability of your
table.

• Document name — Include the name of the document where the requirement is located.
• Locations within document — Include the identifier of a location in the document.
• Requirement keyword — Include the requirement keyword.

Insert Anything into Report?
Yes. Table.

Class
RptgenRMI.TMReqTable

See Also
Data Dictionary Traceability Table, MATLAB Code Traceability Table, rmi

 Simulink Test Suite Traceability Table

6-113

Simulink Workspace Variable
Report on workspace variables used in model, in loop generated by Simulink Workspace
Variable Loop component

Description
This component provides information about those workspace variables that the Simulink model uses,
in a loop generated by a Simulink Workspace Variable Loop component. Your report setup
must include Simulink Workspace Variable component as a child of a Simulink Workspace
Variable Loop component.

The report includes the name and value each variable. Optionally, you can include the following
information for each variable:

• Variable source (MATLAB workspace, model workspace, or data dictionary)
• Blocks that use the variable

For variables that are Simulink data objects (for example, a Simulink.Parameter object), the
report includes the properties of the object. You can filter out properties to streamline the report.

Use a Simulink Workspace Variable Loop component as a parent for a Simulink Workspace
Variable component. In the Report Options dialog box, select Compile model to report on
compiled information.

Options
The following options specify additional information that the report can include about each variable:

6 Components

6-114

• Show workspace: Report the source of each variable — MATLAB workspace, model workspace,
or data dictionary.

• Show blocks that use variable: Report the blocks that use each variable.

For variables whose values are Simulink data objects, you can filter the properties to include in the
report, using one of the following approaches:

• Use the Filter Properties area of the dialog box to specify a standard filter.

The standard filter options apply to all variables whose values are instances of the class or classes
that you specify. For example, you can use a standard filter to filter out the Description
property for all variables used by the model whose values use a Simulink.Parameter object.

• Select the Use custom property filter option and write MATLAB code for filtering.

Writing custom filtering code allows you to do kinds of filtering that the standard filter does not
perform. Some common examples of custom filters that you might want to create are filters that
filter out:

• A property for some, but not all, instances of a class
• Properties that match a regular expression

The Filter Properties area of the dialog box, where you specify a standard filter, has these fields.

• Class name (* for all classes): Specify the class of the variables for which you want to filter out
specific properties. You can specify one class at a time, or enter an asterisk (*) to specify all
classes. After you enter the class name, move the cursor outside of the edit box.

• Available Properties: If the class that you entered in Class name (* for all classes) is on the
MATLAB path, then this list displays the properties of that class.

• Filtered Properties: Displays the properties to filter out. Use the right-arrow button to add to the
Filtered Properties list the properties that you selected in the Available Properties list.

• If the class that you enter is not on the MATLAB path, then a Comma-separated list of
properties to be filtered edit box appears. Enter the names of properties to use for filtering.

• Convert to Custom: Generate custom MATLAB code that implements your Filter Properties
standard filter settings.

Note Selecting the Convert to Custom button overwrites any existing MATLAB custom filtering
code for this component.

To create and apply custom filtering MATLAB code, select the Use custom property filter check
box. Selecting this check box opens an edit box where you define a MATLAB function for filtering
properties. The edit box includes a sample function (commented out) that you can use as a starting
point for your filtering function. Use the isFiltered variable for the output of your function. For
example:

• To filter out the Owner and testProp properties, in the edit box enter:

isFiltered = strcmpi(propertyName, 'Owner')||...
strcmpi(propertyName, 'testProp');

• To filter out all properties except for the CoderInfo property, in the edit box, enter:

isFiltered = ~strcmpi(propertyName, 'CoderInfo');

 Simulink Workspace Variable

6-115

If you clear the Use custom property filter check box, Simulink Report Generator saves your
custom MATLAB filtering code, but does not use that code to filter properties.

Insert Anything into Report?
Yes. List.

Class
rptgen_sl.csl_ws_variable

See Also
Simulink Workspace Variable Loop, Bus, Simulink Functions and Variables

6 Components

6-116

Simulink Workspace Variable Loop
Generates a model variable loop

Description
This component generates a model variable loop used by the Simulink Workspace Variable
component to report on those workspace variables that the Simulink model uses.

You can limit the variables included in the loop to those that match property name and value pairs
that you specify. If you want to report on model variables, your report setup file must include this
component as a child of a Model Loop component and must include a Simulink Workspace
Variable component as its child. Also, in the Report Options dialog box, select Compile model to
report on compiled information. For example:

Loop Options
• Sort

• Alphabetically by text: Sort variables alphabetically by name.
• By data type: Sort variables alphabetically by data type.

• Search for Simulink property name/property value pairs: Reports on variables with specified
property name/property value pairs.

Section Options
• Create section for each object in loop: Creates a separate section in the output for each

variable.

 Simulink Workspace Variable Loop

6-117

• If you specify to create a section for each variable, you can select the Display the object type
in the section title to insert a variable name in each section title.

• Create link anchor for each object in loop: Create a link target for each workspace variable in
the loop so that other parts of the report can link to it.

Insert Anything into Report?
Yes, inserts a section if you select Create section for each object in loop and a link target if you
select Create link anchor for each object in loop.

Class
rptgen_sl.csl_ws_var_loop

See Also
Simulink Workspace Variable, Bus, Simulink Functions and Variables

6 Components

6-118

State Loop
Run child components for all states in current context

Description
This component runs its children for all states in its context. The parent component of this component
determines the context.

• Model Loop: Includes all states in the models.
• System Loop: Includes all states in the systems.
• Machine Loop: Includes all states in the machines.
• Chart Loop: Includes all states in the charts.
• State Loop: Includes all states in the current state.

For conditional processing based on states, you can use the RptgenSF.getReportedState
function. For more information, see “Loop Context Functions” on page 4-90.

State Types
• Include “and” and “or” states: Includes AND and OR states in the loop.
• Include “box” states: Includes “box” states in the loop.
• Include functions: Includes “function” states in the loop.
• Include truth tables: Includes truth tables in the loop.
• Include MATLAB functions: Includes MATLAB functions in the loop.

Loop Options
• Report depth: Specifies the level on which to loop.

• Local children only
• All objects

• Skip autogenerated charts under truth table: Keeps autogenerated state objects under truth
tables from appearing in the report.

• Search Stateflow: Indicates specific states to include in the loop.

Section Options
• Create section for each object in loop: Inserts a section in the generated report for each object

found in the loop.
• Display the object type in the section title: Inserts the object type automatically into the

section title in the generated report.
• Create link anchor for each object in loop: Create a link target for each state in the loop so

that other parts of the report can link to it. For example, the image created by a Stateflow
Snapshot component can link to the chart information only if you select this check box.

 State Loop

6-119

Insert Anything into Report?
Yes, inserts a section if you select Create section for each object in loop and a link target if you
select Create link anchor for each object in loop.

Class
rptgen_sf.csf_state_loop

See Also
Chart Loop, Machine Loop, Model Loop, System Loop, Simulink Function System Loop

6 Components

6-120

State Transition Matrix
Inserts state transition matrix contents into report

Description
This component inserts the contents of state transition matrices into a report. A state transition
matrix is an alternative view of a state transition table. In the state transition matrix, you can easily
see how the state transition table reacts to each condition and event.

Options
• Title

• No title (default): Report uses no title for the state transition matrix.
• Use Stateflow name: For the title in the report, uses the names of the State Transition

Table blocks from which the state transition matrices are generated.
• Custom: In the text field, specify a custom name for the state transition matrix.

• Display condition actions on matrix: Include the state transition matrix condition actions. A
condition action is an action that executes as soon as a condition evaluates to true. The condition
action is part of a transition label.

Insert Anything into Report?
Yes, inserts state transition matrices and optionally, condition actions.

Class
rptgen_sf_csf_statetransitionmatrix

See Also
State Transition Table

 State Transition Matrix

6-121

State Transition Table
Inserts state transition tables into report

Description
This component inserts the state transition tables into a report. A state transition table is an
alternative way of expressing sequential modal logic. Instead of drawing states and transitions
graphically in a Stateflow® chart, you express the modal logic in tabular format.

Options
• Title

• No title (default): Report uses no title for the state transition table.
• Use Stateflow name: Uses the name of the State Transition Table block as the title.
• Custom: In the text field, specify a custom name for the state transition table.

Insert Anything into Report?
Yes, inserts state transition table.

Class
rptgen_sf_csf_statetransitiontable

See Also
State Transition Matrix

6 Components

6-122

Stateflow Automatic Table
Insert table with properties of current Stateflow object

Description
This component inserts a table that contains the properties of the current Stateflow object. Parents of
this component can be:

• Machine Loop
• State Loop
• Chart Loop
• Graphics Object Loop

Display Options
• Table title: Specifies a title for the table in the generated report.

• No title: Includes no title.
• Custom: Includes a custom title.
• Name (default): Uses an object name as the title.

• Object name
• Object name with Stateflow path
• Object name with Simulink and Stateflow path

• Header row: Selects a header row for the table in the generated report.

• No header: Includes no header row.
• Type and Name: Includes a header row with columns for name and object type. When

selected, this option creates a header row for the table with object name and type.
• Custom: Includes a custom header.

• Don't display empty values: Excludes empty values from the generated report.

Insert Anything into Report?
Yes. Table.

Class
rptgen_sf.csf_auto_table

See Also
Chart Loop, Graphics Object Loop, Machine Loop, State Loop

 Stateflow Automatic Table

6-123

Stateflow Count
Count number of Stateflow objects in current context

Description
This component counts the number of Stateflow objects in the current context.

Properties
• Search depth: Specifies the search depth for the count.

• Immediate children only (default): Searches only children one level under the Stateflow
object.

• All descendants: Searches all children of the Stateflow object.
• Sort results: Specifies the sort method for the count results.

• Numerically decreasing by object count (Default)
• Alphabetically increasing by object type

• Include a list of objects in table: Inserts a column containing the counted objects.
• Show total count: Displays a total of counted objects.

Insert Anything into Report?
Yes. Table.

Class
rptgen_sf.csf_count

See Also
State Loop

6 Components

6-124

Stateflow Dialog Snapshot
Insert snapshots of Stateflow editor dialog boxes

Description
This component reports on the current reported Stateflow dialog box object, depending on its
context. If this component is the child of a State Loop, for example, the report includes information
about the dialog box of the current State. Display the current settings associated with an object or
document the appearance of your custom mask dialog boxes.

Format
• Image file format: Specifies the format for the snapshot image file. The Automatic format uses

BMP format for PDF files and PNG for other formats.
• Show all tabs: Automatically generates images for all the tabs for the dialog box. If you clear this

check box, the Simulink Report Generator software creates an image of only the first tab.

Display Options
• Scaling: Controls size of the image, as displayed in a browser. Making an image larger using this

option does not affect the storage size of the image, but the quality of the displayed image may
decrease as you increase or decrease the size of the displayed image.

Generally, to achieve the best and most predictable display results, use the default setting of Use
image size.

• Use image size: Causes the image to appear the same size in the report as on screen
(default).

• Fixed size: Specifies the number and type of units.
• Zoom: Specifies the percentage, maximum size, and units of measure.

• Size: Specifies the size of the snapshot in the form w h (width, height). This field is active only if
you choose Fixed size in the Scaling selection list.

• Max size: Specifies the maximum size of the snapshot in the form w h (width, height). This field is
active only if you choose Zoom in the Scaling selection list.

• Units: Specifies the units for the size of the snapshot. This field is active only if you choose Zoom
or Fixed size in the Image size list box.

• Alignment: Aligns your snapshot. Only reports in PDF or RTF format support this property.

• Auto
• Right
• Center
• Left

• Title: Specifies text to appear above the snapshot.
• Caption: Specifies text to appear under the snapshot.

 Stateflow Dialog Snapshot

6-125

Insert Anything into Report?
Yes. Snapshot.

Class
rptgen_sl.Cdialog boxesnapshot

See Also
State Loop

6 Components

6-126

Stateflow Filter
Run child components only if current object type matches specified object type

Description
This component runs its children only if the current object type, as set by its parent Stateflow
Hierarchy Loop, matches the selected object type.

Properties
• Object type: Specifies the Stateflow object type to include in the report.
• Run only if Stateflow object has at least the following number of Stateflow children:
Specifies a minimum number of children that a Stateflow object must have to include in the
report.

• Automatically insert linking anchor: Inserts a linking anchor before the reported object. If an
anchor for this object exists, this option does not create a second anchor.

Insert Anything into Report?
No.

Class
rptgen_sf.csf_obj_filter

See Also
Stateflow Hierarchy Loop

 Stateflow Filter

6-127

Stateflow Hierarchy
Provide visual representation of the hierarchy of a Stateflow object

Description
This component inserts a tree that shows the hierarchy of a given Stateflow object.

Tree Options
• Construct tree from: Specifies the object to use for the tree representation.

• Current object
• Root of current object: Starts reporting from the top of the hierarchy.

• Emphasize current object in tree: Highlights the current object in the tree representation.
• Show number of parents: Specifies the number of parents to include in the tree representation.
• Show siblings: Displays siblings in the tree representation.
• Show children to depth: Specifies the depth of children to display for each object in the tree

representation.

Children
• Show junctions: Specifies the level of junction detail to display in the generated report.

• All
• Non-redundant
• None

• Show transitions: Specifies the level of transition detail to display in the generated report.

• All
• Labeled or non-redundant
• Non-redundant
• Labeled
• None

• Show ports: Specifies the level of port detail to display in the generated report.

• All
• Labeled or non-redundant
• Non-redundant
• Labeled
• None

• Skip autogenerated charts under truth tables: Excludes autogenerated charts under truth
tables.

6 Components

6-128

List Formatting
• List style:

• Bulleted list
• Numbered list: Allows you to specify numbering options in the Numbering style section.

• Numbering style: Allows you to specify a numbering style. This setting supports only the
RTF/DOC report format.

• 1,2,3,4...
• a,b,c,d...
• A,B,C,D...
• i,ii,iii,iv...
• I,II,III,IV...

To show the parent number in each list entry, select Show parent number in nested
list (1.1.a). To show only the current number or letter, select Show only current
list value (a).

Insert Anything into Report?
Yes. Tree graphic.

Class
rptgen_sf.csf_hier

See Also
Stateflow Hierarchy Loop

 Stateflow Hierarchy

6-129

Stateflow Hierarchy Loop
Run child components on Stateflow object hierarchy

Description
This component runs its child components on the Stateflow object hierarchy.

Loop Options
• Minimum legible font size: Specifies the minimum font size to use in the report. The default

font size, 8, is the smallest recommended font size.
• Skip autogenerated charts under truth tables; Excludes autogenerated charts under truth

tables in the report.
• Search Stateflow: Reports on Stateflow charts with specified property name/property value

pairs.

Section Options
• Create section for each object in loop: Inserts a section in the generated report for each object

found in the loop.
• Display the object type in the section title: Inserts the object type automatically into the

section title in the generated report.
• Create link anchor for each object in loop: Create a link target on each object in the loop so

that other parts of the report can link to it.

Insert Anything into Report?
No.

Class
rptgen_sf.csf_hier_loop

See Also
Stateflow Hierarchy

6 Components

6-130

Stateflow Linking Anchor
Designate locations to which links point

Description
This component designates a location to which other links point. The linking anchor is set to the
current object, as defined by the parent component.

This component must have the Chart Loop, State Loop, Machine Loop, or Stateflow Filter
component as its parent.

Properties
Insert text: Specifies text to appear after the linking anchor.

Insert Anything into Report?
Yes. A link, and possibly text, depending on attribute choices.

Class
rptgen_sf.csf_obj_anchor

See Also
Chart Loop, Machine Loop, State Loop, Stateflow Filter,

 Stateflow Linking Anchor

6-131

Stateflow Name
Insert into report name of Stateflow object specified by parent component

Description
This component inserts the name of the Stateflow object, as defined by its parent component, into the
report. This component must have the State Loop, Chart Loop, or Stateflow Filter
component as its parent.

Using this component as the first child component of a Chapter/Subsection component allows the
current Stateflow object name to be the chapter or section title.

Properties
• Display name as: Displays the Stateflow object name in the report.

• Name: For example, Object
• Type Name: For example, Object <ObjectName>
• Type - Name: For example, Object - <ObjectName>
• Type: Name: For example, Object: <ObjectName>

• Display name as: Specifies the level of detail with which the Stateflow object name displays the
report.

• Object name
• Object name with Stateflow path
• Object name with Simulink and Stateflow path

Insert Anything into Report?
Yes. Text.

Class
rptgen_sf.csf_obj_name

See Also
Chapter/Subsection, Chart Loop, State Loop, Stateflow Filter

6 Components

6-132

Stateflow Property
Insert into report table, text, or paragraph with information on selected Stateflow object property

Description
This component inserts a table, text, or paragraph that contains details of the selected Stateflow
object property.

Property to Display
Property name: Specifies the Stateflow property name to display. If the Stateflow object is an
annotation, the Display options are ignored. Annotation content is reported as plain text for web
(HTML), Acrobat (PDF), and Word Document (rtf) output types or as formatted text for other output
types.

Display Options
• Title: Specifies a title to display in the generated report.

• Automatic: Uses the parameter name as the title.
• Custom: Specifies a custom title.
• None: Specifies no title.

• Size limit: Specifies the width of the display in the generated report. Units are in pixels. The size
limit for a given table is the hypotenuse of the width and height of the table, sqrt(w^2+h^2).
The size limit for text is the number of characters squared. If you exceed the size limit, the
variable appears in condensed form.

Setting a size limit of 0 always displays the variable in long form, regardless of its size.
• Display as: Specifies a display style from the menu.

• Auto table/paragraph (default): Displays as a table or paragraph based on the information.
• Table: Displays as a table.
• Paragraph: Displays as a text paragraph.
• Inline text: Displays in line with the surrounding text.

• Ignore if value is empty: Excludes empty parameters from the generated report.

Insert Anything into Report?
Yes. Text, paragraph, or table.

Class
rptgen_sf.csf_property

 Stateflow Property

6-133

See Also
Paragraph, Table, Text, Stateflow Name

6 Components

6-134

Stateflow Property Table
Insert into report property-value table for Stateflow object

Description
This component inserts a property-value table for a Stateflow object into the report. Use the
Stateflow Filter component as the parent of this component.

For more information on working with Property Table components, see “Property Table Components”.

Table
Select a preset table, which is already formatted and set up, in the preset table list in the upper-left
corner of the attributes page.

• Preset table: Specifies a type of table to display the object property table.

• Default
• Machine
• Chart
• State
• TruthTable
• EMFunction
• SLFunction
• Data
• Event
• Junction
• Port
• Transition
• Target
• Blank 4X4

To apply a preset table, select the table and click Apply.
• Split property/value cells: Splits property name/property value pairs into separate cells.

• For the property name and property value to appear in adjacent horizontal cells, select the
Split property/value cells check box. In this case, the table is in split mode, there is only one
property name/property value pair per cell. If there is more than one name/property pair in a
cell, only the first pair appears in the report. The report ignores all subsequent pairs.

• For the property name and property value to appear together in one cell, clear the Split
property/value cells check box. This setting is nonsplit mode. Nonsplit mode supports more
than one property name/property value pair and text.

• Before switching from nonsplit mode to split mode, make sure that there is only one property
name/property value pair per table cell. When there is more than one property name/property

 Stateflow Property Table

6-135

value pair or any text in a given cell, only the first property name/property value pair appears
in the report. The report omits subsequent pairs and text.

• Display outer border: Displays the outer border of the table in the generated report.
• Table Cells: Specifies table properties to modify. The selection in this pane affects the available
fields in the Cell Properties pane.

Cell Properties
The options in the Title Properties pane depend on the object selected in the Table Cells pane. If
you select %<Name>, only Contents and Show appear. If you select any other object in the Table
Cells pane, Lower border and Right border appear.

• Contents: Modifies the contents of the table cell selected in the Table Cells pane.
• Alignment: Justifies the contents of the selected table cell in the Table Cells pane.

• Left
• Center
• Right
• Double justified

• Show As: Specifies the format for the contents of the table cell.

• Value
• Property Value
• PROPERTY Value
• Property: Value
• PROPERTY: Value
• Property - Value
• PROPERTY - Value

• Lower border: Displays the lower border of the table in the generated report.
• Right border: Displays the right border of the table in the generated report.

Creating Custom Tables

You can edit a preset table, such as the Blank 4x4 table, to create a custom table. Add and delete
rows and add properties. To open the Edit Table dialog box, click Edit.

For details about creating custom property tables, see “Property Table Components”.

Insert Anything into Report?
Yes. Table.

Class
rptgen_sf.csf_prop_table

6 Components

6-136

See Also
Stateflow Filter

 Stateflow Property Table

6-137

Stateflow Snapshot
Insert into report snapshot of Stateflow object

Description
This component inserts a snapshot (screen capture) of a Stateflow object, defined by the Stateflow
Filter parent component, into a report.

This component executes only if the selected object in the Stateflow Filter component is a
graphical object, such as Chart, State, Transition, or Frame.

For HTML and Direct PDF (from template) output, the state charts in the resulting image can
link to associated report information. To enable this linking, on the Chart Loop component that this
component is a descendant of, select the Create link anchor for each object in loop check box.
For Direct PDF (from template) output, you also need to set the output format to Automatic
SF format or Scalable Vector Graphics.

Snapshot
• Format: Specifies the image file format. Select Automatic SF Format (default) to choose the

format best suited for the specified report output format automatically. Otherwise, choose an
image format that your output viewer can read.

• Automatic SF Format — Select this option, or Scalable Vector Graphics, with Direct
PDF (from template) report output format if you are linking the snapshot to related report
content.

• Bitmap
• JPEG high quality image
• JPEG low quality image
• JPEG medium quality image
• PNG 24–bit image
• Scalable Vector Graphics

• Paper orientation:

• Portrait
• Landscape
• Rotated
• Largest dimension vertical: Positions the image so that its largest dimension is vertical.
• Use Chart PaperOrientation setting: Uses the paper orientation setting for the chart.

Use the Simulink PaperOrientation parameter to specify the orientation.
• Full page image (PDF only): In PDF reports, scales images to fit the full page, minimizes

page margins, and maximizes the size of the image by using either a portrait or landscape
orientation.

For more information about paper orientation, see the orient command in the MATLAB
documentation.

6 Components

6-138

• Image sizing:

• Shrink image to minimum font size specified in Stateflow Hierarchy Loop:
Resizes the image so that the text label font size is the minimum font size.

• Fixed and Zoom: Specifies the size of the image.
• Scaling: Specifies the percentage of the image size to which to scale it.
• Maximum size: Specifies the maximum size for the snapshot in the generated report in the

selected units. Use [width, height] format. In the units text box, select Inches,
Centimeters, Points, or Normalized.

• Use printframe: Inserts a frame around your image. Use the default frame or create a custom
one.

• Use printframe paper settings: Uses the dimensions and parameters as set by the specified
printframe to size your image. If you choose this option, all other options (except for Image file
format) become inactive.

Properties
• Include callouts to describe visible objects: Displays descriptive callouts for visible objects.
• Insert anchors for transitions and junctions: Inserts anchors for transitions and junctions into

the report.

• None
• Redundant children only
• All

• Run only if Stateflow object has at least the following number of children: Specifies the
minimum number of children that the current Stateflow object must have to include in the report.
This option is inactive unless the selected object in the parent Stateflow Filter component is
a graphical object.

Tip This option allows you to exclude certain images to decrease the size of the report for large
models.

Display Options
• Scaling:

• Use image size: Uses the image size that you specify in the snapshot option.
• Zoom and Fixed size: Allows you to specify the size of the image.

• Size: Specifies a size in inches for your image. The default is 7-by-9.
• Max size: Specifies the maximum size of the snapshot in the format w h (width, height). This field

is active only if you choose Zoom from the Scaling selection list.
• Units: Specifies the units for the size of the snapshot. This field is active only if you choose Zoom

or Fixed sizein the Image size list box.
• Alignment: Only reports in PDF or RTF format support this property.

• Auto

 Stateflow Snapshot

6-139

• Right
• Center
• Left

• Image title:

• None(Default).
• Object name: Uses the object name as the title.
• Full Stateflow name: Specifies the Stateflow path and the name of the object.
• Full Simulink + Stateflow name: Specifies the Simulink path and name of the object.
• Custom: Enter a different title.

• Caption: Specifies a caption for your image.

• None(Default).
• Custom: Specifies a custom caption.
• Description: Sets the caption to the value of the object Description property.

Insert Anything into Report?
Yes. Image.

Class
rptgen_sf.csf_obj_snap

Class
rptgen_sf.csf_prop_table

See Also
Stateflow Filter

6 Components

6-140

Stateflow Summary Table
Table of properties or parameters of specified Stateflow object

Description
This component displays a table of properties or parameters of specified Stateflow objects. It can
have the following parents:

• Any Stateflow looping component
• Any Simulink looping component (Model Loop, System Loop, Block Loop, or Signal Loop)

Properties
• Object type: Specifies the object type to display in the generated report. This value affects the

options available in the Property Columns pane.
• Table title: Specifies a title for the Summary Table in the generated report.

• Automatic: Generates a title automatically from the parameter.
• Custom: Specifies a custom title.

Property Columns
• Property columns: Displays the object properties to include in the Summary Table in the

generated report.

• To add a property:

• Select the appropriate property level in the text box.
• In the context list under the text box, select the property that you want to add and click

Add.
• To delete a property, select the property name and press the Delete key.

Some entries in the list of available properties (such as Depth) are “virtual” properties that you
cannot access using the get_param command. The properties used for property/value filtering in
the block and System Loop components must be retrievable by the get_param. Therefore, you
cannot configure your Summary Table to report on all blocks of Depth == 2.

• Remove empty columns: Removes empty columns from the Summary Table in the generated
report.

• Transpose table: Changes the summary table rows into columns in the generated report, putting
the property names in the first column and the values in the other columns.

Object Rows
Insert anchor for each row: Inserts an anchor for each row in the summary table.

 Stateflow Summary Table

6-141

Report On
• Automatic list from context: Reports on all blocks in the current context, as set by the parent

component.
• Custom - use block list: Reports on a specified list of blocks. Specify the full path of each block.

Loop Options
Choose block sorting options and reporting options in this pane.

• Sort blocks: Specifies how to sort blocks (applied to each level in a model):

• Alphabetically by block name: Sorts blocks alphabetically by name.
• Alphabetically by system name: Sorts systems alphabetically by name. Lists blocks in

each system, but in no particular order.
• Alphabetically by full Simulink path: Sorts blocks alphabetically by Simulink path.
• By block type: Sorts blocks alphabetically by block type.
• By block depth: Sorts blocks by their depth in the model.
• By layout (left to right): Sorts blocks by their location in the model layout, by rows.

The block appearing the furthest toward the left top corner of the model is the anchor for the
row. The row contains all other blocks that overlap the horizontal area defined by the top and
bottom edges of the anchor block. The other rows use the same algorithm, using as the anchor
the next unreported block nearest the left top of the model.

• By layout (top to bottom): Sorts blocks by their location in the model layout, by
columns. The block appearing the furthest toward the left top corner of the model is the anchor
for the column. The column contains all other blocks that overlap the vertical area defined by
the left and right edges of the anchor block. The other columns use the same algorithm, using
as the anchor the next unreported block nearest the left top of the model.

• By traversal order: Sorts blocks by traversal order.
• By simulation order: Sorts blocks by execution order.

• Search for Simulink property name/property value pairs: Reports on blocks with specified
property name/property value pairs.

• Search Stateflow: Reports on Stateflow charts with specified property name/property value
pairs.

6 Components

6-142

Insert Anything into Report?
Yes. Table.

Class
rptgen_sf.csf_summ_table

See Also
Block Loop, Chart Loop, Model Loop, Object Loop, Signal Loop, State Loop, Stateflow
Hierarchy Loop, System Loop

 Stateflow Summary Table

6-143

System Filter
Run child components if current system meets specified conditions

Description
This component runs its child components if the current system meets the conditions that you specify
with this component.

Properties
• Report only if system has at least N blocks: Specifies the minimum number of blocks that the

system must include for any of the child components to run. If you enter 0, child components run
regardless of the number of blocks in the system.

• Report only if system has at least N subsystems: Specifies the minimum number of
subsystems that the system must include for the child components to run. If you enter 0, child
components run regardless of the number of subsystems in the system.

• Report only if system mask type is: Specifies which masks to include in the generated report.

• Either masked or unmasked
• Masked
• Unmasked

• Custom filtering MATLAB code: Specifies custom MATLAB filtering code that the System Filter
applies when determining which systems and subsystems to report on in a System Loop
component. The edit box includes a sample function (commented out) that you can use as a
starting point for your own filtering function. Use the isFiltered variable for the output of your
function. For example, to filter out systems and subsystems whose names start with engine,
enter:

isFiltered = strncmpi(currentSystem, 'engine', 6);

Insert Anything into Report?
No.

Class
rptgen_sf.csf_obj_filter

See Also
System Loop

6 Components

6-144

System Hierarchy
Create nested list that shows hierarchy of specified system

Description
This component creates a nested list that shows the hierarchy of a specified system. The list can
display all systems in a model, or the parents and children of the current system.

Starting System
• Build list from: Specifies the system or model from which to build the list.

• Current system
• Current model

• Emphasize current system: Highlights the current system or model in the generated report.

Display Systems
• Show number of parents: Specifies the number of parents to list.
• Display peers of current system: Shows the peers of the current system in the generated

report.
• Show children to depth: Specifies the depth of children to list.

List Formatting
• List style:

• Bulleted list
• Numbered list: Allows you to select numbering options in the Numbering style section.

• Numbering style: Allows you to select a numbering style in the selection list, by setting List
style to Numbered list. Only the RTF/DOC report format supports this option.

• 1,2,3,4,...
• a,b,c,d,...
• A,B,C,D,...
• i,ii,iii,iv,...
• I,II,III,IV,...

Insert Anything into Report?
Yes. List.

Class
rptgen_sl.csl_sys_list

 System Hierarchy

6-145

See Also
Model Loop, System Loop

6 Components

6-146

System Loop
Specify systems and subsystems on which to loop, as defined by parent component

Description
This component runs its child components for each system defined by the parent component. For
example, to include systems and subsystems within a given model in the report, you can include this
component as the child of a Model Loop component.

For conditional processing systems, you can use the RptgenSL.getReportedSystem function. For
more information, see “Loop Context Functions” on page 4-90.

Report On
• Loop on Systems:

• Select systems automatically: Reports on all systems in the current context as set by
the parent component.

• Model Loop: Reports on systems in the current model.
• System Loop: Reports on the current system.
• Signal Loop: Reports on the parent system of the current signal.
• Block Loop: Reports on the parent system of the current block.

If this component does not have any of these components as its parent, selecting this option
reports on all systems in all models.

• Custom - use system list: Reports on a list of specified systems. Specify the full path of
each system.

• %<VariableName>: Inserts the value of a variable from the MATLAB workspace. The %<>
notation can denote a string or cell array. For more information, see %<VariableName>
Notation on the Text component reference page.

• Include subsystems in Simulink functions: Specifies whether to include subsystems in
Simulink functions. By default, this option is enabled.

Loop Options
• Sort Systems: Specifies how to sort systems.

• Alphabetically by system name (default): Sorts systems alphabetically by name.
• By number of blocks in system: Sorts systems by number of blocks. The list shows

systems by decreasing number of blocks; that is, the system with the largest number of blocks
appears first in the list.

• By system depth: Sorts systems by their depth in the model.
• By traversal order: Sorts systems in traversal order.

• Search for: Reports only on the Subsystem blocks with the specified property name-value pairs.
To enable searching, click the check box. In the first row of the property name and property value
table, click inside the edit box, delete the existing text, and type the property name and value.

 System Loop

6-147

To find property names for Subsystem blocks, see the Programmatic Use sections for the
parameters in Subsystem, Atomic Subsystem, CodeReuse Subsystem or select a Subsystem block
in the model and enter this code at the MATLAB command line:

get(gcbh)

Section Options
• Create section for each object in loop: Inserts a section in the generated report for each object

found in the loop.
• Display the object type in the section title: Inserts the object type automatically into the

section title in the generated report.
• Number sections by system hierarchy: Hierarchically numbers sections in the generated

report. Requires that Sort Systems be set to By traversal order.
• Create link anchor for each object in loop: Create a link target for each system in the loop so

that other parts of the report can link to it. For example, the image created by a System
Snapshot component can link to the subsystem section only if you select this check box.

Examples
For an example of how to use this component with a Model Loop as its parent, see Model Loop.

Insert Anything into Report?
Yes, inserts a section if you select Create section for each object in loop and a link target if you
select Create link anchor for each object in loop.

Class
rptgen_sl.csl_sys_loop

See Also
Block Loop, Model Loop, Signal Loop

6 Components

6-148

System Snapshot
Insert snapshot of the current system into report

Description
This component inserts a snapshot (screen capture) of the current system into a report. A System
Snapshot must be a child or descendant of a System Loop component.

For HTML and Direct PDF (from template) output, the blocks and subsystems in the resulting
image can link to associated report information. For example, a block in the report can link to a block
property table. A subsystem can link to the subsystem block diagram or to the block properties.

Note For PDF reports in which you want to include hyperlinks in system snapshots, use Direct PDF
(from template) file format. If you use Acrobat (PDF) format, snapshots do not include
hyperlinks.

To enable this linking, select the Create link anchor for each object in loop check box on the
appropriate loop component:

• For blocks and masked subsystems in this system, select the check box on the Block Loop
component that reports on the system’s blocks.

• To provide links to the sections that report on the unmasked subsystems of this system, select the
check box on the System Loop component.

For Direct PDF (from template) output, you also need to set the output format to Automatic
SL format or Scalable Vector Graphics.

Snapshot Options
• Format: Specifies the image file format. Select Automatic SL Format (the default) to choose

the format best suited for the specified report output format automatically. Otherwise, choose an
image format that your output viewer can read.

• Automatic SL Format — Select this option. or Scalable Vector Graphics, with Direct
PDF (from template) report output format if you are linking the snapshot to related report
content.

• Bitmap
• JPEG high quality image
• JPEG low quality image
• JPEG medium quality image
• PNG 24–bit image
• Scalable Vector Graphics

• Orientation:

• Largest dimension vertical: Positions the image so that its largest dimension is vertical.

 System Snapshot

6-149

• Landscape
• Portrait
• Use system orientation: Uses the paper orientation setting for the system. Use the

Simulink PaperOrientation parameter to specify the orientation.
• Full page image (PDF only): In PDF reports, scales images to fit the full page, minimizes

page margins, and maximizes the size of the image by using either a portrait or landscape
orientation.

• Scaling: Controls the size of the image in the image file.

• Automatic (default): Automatically scales the image to output dimensions.
• Custom: Specifies image size.
• Zoom: Enlarges or reduces the image size to the percent that you specify. Use Max Size to

specify the maximum size other than the default for the image.

Note Selecting Use printframe paper settings deactivates the Custom and Zoom options
and automatically scales the image to the print frame size.

Properties Options
• Include callouts to describe visible objects: Displays descriptive callouts for visible objects
• Use printframe: Prints a frame around the image. You can use the default frame,

rptdefaultframe.fig, or use the Frame Editor to build a custom frame. For more information,
see the frameedit function in Simulink documentation.

The default frame is five inches wide and four inches high. It includes the name of the system and
the model folder. This frame is optimized for use with a portrait paper orientation. The Flight
Control Model in the f14 Simulink model appears here with the default Simulink Report
Generator frame option.

6 Components

6-150

Display Options
To access the display options, click the Advanced button.

• Scaling: Controls size of the image, as displayed in a browser. Making an image larger using this
option does not affect the storage size of the image, but the quality of the displayed image may
decrease as you increase or decrease the size of the displayed image.

Generally, to achieve the best and most predictable display results, use the default setting of Use
image size.

• Use image size: Causes the image to appear the same size in the report as on screen
(default).

• Fixed size: Specifies the number and type of units.
• Zoom: Specifies the percentage, maximum size, and units of measure.

• Size: Specifies the size of the snapshot in a browser, using the format w h (width, height). This
field is active only if you choose Fixed size in the Scaling selection list.

• Max size: Specifies the maximum size of the snapshot in a browser, using the format w h (width,
height). This field is active only if you choose Zoom in the Scaling selection list.

• Units: Specifies the units for the size of the snapshot in a browser. This field is active only if you
choose Fixed size in the Image size list box.

 System Snapshot

6-151

• Alignment: Only reports in PDF or RTF format support this property.

• Auto
• Right
• Left
• Center

• Image title:

• None (Default)
• System name: Uses the system name as the image name.
• Full system name: Uses the system name, with path information, as the image name.
• Custom: Specifies a custom title.

• Caption:

• None (Default)
• Description (use system description)
• Custom: Specifies a custom caption.

Insert Anything into Report?
Yes. Image.

Class
rptgen_sl.csl_sys_snap

See Also
System Loop, Block Loop

6 Components

6-152

Test Sequence
Capture Test Sequence block information

Description
This component captures information about Simulink Test™ Test Sequence blocks. The report
includes the test sequence using the tabular series of steps from the Test Sequence block.

Test Sequence Block Section Title
Title to use for the Test Sequence block section:

• Use Test Sequence name (default): Use the name of the Test Sequence block as the section
title.

• Custom: Specify a custom section title in the text box.

Step Content
Select the step content to include in the report.

• Include description, action, and transition table (default): Include all the step data in the
report, i.e., step descriptions, action statements, transition table, and when condition.

• Include description only: Include only the description of each step in the report.
• Include action and transition table only: Include the action statements, transition table, and

when condition in the report.
• None: Do not include the description, action, or transition table in the report.
• Show requirements: Include links to requirements that are attached to steps in the Test

Sequence block.

Insert Anything into Report?
Yes. Test Sequence block name or specified title and optional step information.

Class
rptgen_stm.cstm_testseq

 Test Sequence

6-153

To Workspace Plot
Capture plot figure created in the MATLAB workspace

Description
This component captures a plot figure created in the MATLAB workspace, and then inserts one or
both of the following into the report:

• A table that includes input and output numeric values.
• A figure that plots the values included in the table.

Print Options
• Image file format: Specifies the image file format (for example, JPEG or TIFF) from this list.

Select Automatic HG Format (the default) to choose the format best suited for the specified
report output format automatically. Otherwise, choose an image format that your output viewer
can read. Other options are:

• Automatic HG Format (Uses the file format selected in the Preferences dialog box)
• Bitmap (16m-color)
• Bitmap (256-color)
• Black and white encapsulated PostScript
• Black and white encapsulated PostScript (TIFF)
• Black and white encapsulated PostScript2
• Black and white encapsulated PostScript2 (TIFF)
• Black and white PostScript
• Black and white PostScript2
• Color encapsulated PostScript
• Color encapsulated PostScript (TIFF)
• Color encapsulated PostScript2
• Color encapsulated PostScript2 (TIFF)
• Color PostScript
• Color PostScript2
• JPEG high quality image
• JPEG medium quality image
• JPEG low quality image
• PNG 24-bit image
• TIFF - compressed
• TIFF - uncompressed
• Windows metafile

• Paper orientation:

6 Components

6-154

• Landscape
• Portrait
• Rotated
• Use figure orientation: Uses the orientation for the figure, which you set with the

orient command.
• Full page image (PDF only): In PDF reports, scales images to fit the full page, minimizes

page margins, and maximizes the size of the image by using either a portrait or landscape
orientation.

For more information about paper orientation, see the orient command in the MATLAB
documentation.

• Image size:

• Use figure PaperPositionMode setting: Uses the PaperPositionMode property of
the Handle Graphics figure to set the image size in the report. For more information about
paper position mode, see the orient command in the MATLAB documentation.

• Automatic (same size as on screen): Sets the image in the report to the same size as
it appears on the screen.

• Custom: Specifies a custom image size. Specify the image size in the size and units fields.
• Size: Specifies the size of the Handle Graphics figure snapshot in the format wxh (width times

height). This field is active only if you choose Custom in the Image size list box.
• Units: Specifies units for the size of the Handle Graphics figure snapshot. This field is active only

if you choose Set image size in the Custom list box.
• Invert hardcopy: Uses the Handle Graphics figures InvertHardcopy property, which inverts

colors for printing; it changes dark colors to light colors, and light colors to dark colors.

• Automatic: Automatically changes dark axes colors to light axes colors. If the axes color is a
light color, it is unchanged.

• Invert: Changes dark axes colors to light axes colors, and light axes colors to dark axes
colors.

• Don't invert: Retains image colors displayed on screen in the printed report.
• Use figure's InvertHardcopy setting: Uses the InvertHardcopy property set in the

Handle Graphics image.
• Make figure background transparent: Makes the image background transparent.

Display Options
• Scaling: Controls size of the image, as displayed in a browser. Making an image larger using this

option does not affect the storage size of the image, but the quality of the displayed image may
decrease as you increase or decrease the size of the displayed image.

Generally, to achieve the best and most predictable display results, use the default setting of Use
image size.

• Use image size: Causes the image to appear the same size in the report as on screen
(default).

• Fixed size: Specifies the number and type of units.

 To Workspace Plot

6-155

• Zoom: Specifies the percentage, maximum size, and units of measure.
• Size: Specifies the size of the snapshot in the format w h (width, height). This field is active only if

you choose Fixed size in the Scaling list.
• Max size: Specifies the maximum size of the snapshot in the format w h (width, height). This field

is active only if you choose Zoom from the Scaling list.
• Units: Specifies units for the size of the snapshot. This field is active only if you choose Zoom or

Fixed size in the Image size list box.
• Alignment: Only reports in PDF or RTF format support this property.

• Auto
• Right
• Left
• Center

• Title: Specifies text to appear above the snapshot.
• Caption: Specifies text to appear under the snapshot.

Insert Anything into Report?
Yes. Figure.

Class
rptgen_sl.csl_blk_toworkspace

See Also
Figure Loop

6 Components

6-156

Truth Table
Report on truth tables in Simulink and Stateflow models

Description
The Truth Table component reports on truth tables in Simulink and Stateflow models. It displays both
the condition table and the action table. The parent component of the Truth Table determines its
behavior.

• Model Loop: Reports on all truth tables in the current model.
• System Loop: Reports on all truth tables in the current system.
• Block Loop : Reports on all truth tables in the current block.
• Signal Loop: Reports on all truth tables in the current signal.

Title
Title: Specifies a title for the truth table.

• No title
• Use Stateflow name
• Custom

Condition Table
Specify display parameters for the condition table.

• Show header: Displays the column headers in the table.
• Show number: Displays the condition number column in the table.
• Show condition: Displays the condition column in the table.
• Show description: Displays the description column in the table.
• Wrap if column count: Specifies how many columns to display before creating a table

continuation. If the specified number is greater than the number of columns that can appear on
the page, some columns do not appear in the report.

Action Table
• Show header: Displays the column headers in the table.
• Show number: Displays the condition number column in the table.
• Show condition: Displays the condition column in the table.
• Show description: Displays the description column in the table. If you do not select this option,

no action table appears in the report.

Insert Anything into Report?
Yes. Table.

 Truth Table

6-157

Class
rptgen_sf.csf_truthtable

See Also
Block Loop, Model Loop, Signal Loop, System Loop

6 Components

6-158

Classes

7

slreportgen.webview.EmbeddedWebViewDocumen
t class
Package: slreportgen.webview

Create a report generator that generates an HTML report containing an interlinked document and
associated web view

Description
Creates a report generator that generates an HTML report containing a document and a web view of
one or more Simulink models, with two-way hyperlinks between the document and the web view.

This class provides the following facilities for generating embedded web view reports:

• A report generator based on an slreportgen.report.Report object. You can use DOM and
Report APIs to fill the document content.

• An HTML template with three panels for a table of contents (TOC), document content, and a web
view, respectively

• Template holes to be filled with the document content and a web view, respectively. The hole for
the web view is named slwebview and is located in the right panel of the report. The hole for
document content is named Content and is located in the center panel of the report.

• Methods for filling the document and web view holes.
• Methods for creating two-way hyperlinks between the document content and embedded

webview(s)
• JavaScript that generates a TOC from document headings when the report opens in a browser
• Model export options that allow you to specify the models and subsystems to be embedded as web

views in the generated report
• Methods for retrieving elements (diagrams, blocks, charts, etc.) from models to be embedded as

web views in the report

Construction
rptgen = slreportgen.webview.Embedded WebViewDocument(rptname,model) creates a
report generator that generates a report having the specified file name and containing a web view of
the specified model. Use the generator’s fill method to generate the web view and embed the web
view in the document. Use the generator’s close method to output the document as a zip file or
folder containing the HTML document.

rptgen = slreportgen.webview.EmbeddedWebViewDocument(rptname,model1,
model2,...modeln) creates a report generator that includes two or more models in the web view
that it creates. This constructor assigns an array of default
slreportgen.webview.ExportOptions objects to the generator’s ExportOptions property, one
for each of the models to be included in the generated document’s web view. You can use the objects
to specify custom export options for each of the models to be included in the web view exported to
the generated document.

7 Classes

7-2

rptgen = slreportgen.webview.Embedded WebViewDocument(rptname,{model1,
model2,...modeln}) creates a generator that includes the specified models in the web view that it
embeds in the output document.

rptgen = slreportgen.webview.EmbeddedWebViewDocument(rptname) creates a generator
that embeds models specified by the Diagrams property of the generator’s ExportOptions
property, for example:

import slreportgen.webview.*
rptgen = EmbeddedWebViewDocument('myDoc');
rptgen.ExportOptions.Diagrams = 'myModel';

Input Arguments
rptname — Name of output report file and/or folder
character vector

Name of the zip file and/or folder containing the report generated by this generator. Use this
generator’s PackageType property to specify whether to package the generated report as a file or a
folder or both. If you specify an extension, the extension must be .htmx. If you do not specify an
extension, the report generator appends .htmx.

model — Name of model to export
character vector

Name of model, specified as a character vector, to be embedded in the generated report as a web
view.

Output Arguments
rptgen — Embedded web view report generator
slreportgen.webview.EmbeddedWebViewDocument

Properties
CurrentHoldID — Identifier of current hole in document
character vector

Identifier of current hole in document, stored as a character vector. This is a read-only property.

ExportOptions — Web view export options
slreportgen.webview.ExportOptions (default)

An array of slreportgen.webview.ExportOptions objects, one for each model or set of models
to be included in the web view exported to the generated report. The generator’s constructor sets
this property with default values for the models you specify. Use the properties of the export options
object or objects to customize export of the models to the generated web view. For example, you can
specify additional models to include or whether to include the block diagrams of masked subsystems
and library blocks.

ForceOverwrite — Overwrite existing report
True (default) | False

 slreportgen.webview.EmbeddedWebViewDocument class

7-3

Whether to overwrite an existing report with the same name. True overwrites the existing report.
False generates the report under a new name.

OpenStatus — Status of the report being generated
unopened (default) | opened

Status of the report being generated, either 'unopened' or 'opened'. This is a read-only property.

OutputPath — Path of the document output directory
current working directory (default)

Path of the report output directory.

PackageType — Packaging for files generated
'both' (default) | 'zipped' | 'unzipped'

Packaging to use for output document, specified as one of these character vectors:

• 'both' — Creates both zipped and unzipped output
• 'zipped' — Creates a zip file with an .htmx extension
• 'unzipped' — Creates a folder of files

TemplatePath — Path of the template used to generate this report
character vector

Path to the HTML template to use to generate this report, specified as a character vector. The
template has an .htmtx extension. This property points by default to a default template. To use a
custom template, set this property to the path of the custom template.

TitleBarText — Text for HTML browser title bar
character vector

Text to display in the title bar of the HTML browser used to display the generated report. The default
text is “Simulink Web View - Created by Simulink Report Generator."

ValidateLinksAndAnchors — Whether to check validity of hyperlinks between the
generated document and web view
True (default) | False

Generates a warning at the command line if the link target that you specify does not exist or if you
specify a link from a model element that already has a link. Validation checking increases the time
required to generate a report. For this reason, consider using link validation checking only when
debugging your report.

Methods
Method Purpose
createDiagramTwoWayLink Creates a two-way link between a location in the

document in the center panel and a diagram in
the web view in the right panel

7 Classes

7-4

Method Purpose
createElementTwoWayLink Creates a two-way link between a document

panel location and a diagram element in the web
view

createDiagramLink Creates a link from the document panel to a
diagram in the model web view

createElementLink Creates a link from the document panel to an
element in the model web view

fill Invoke the embedded web view report
generator’s hole filling methods to fill the holes in
its template.

fillslwebview Fills template’s slwebview hole with a web view
getExportModels Names of models to be included in the web view
getExportDiagrams Paths and handles of block diagrams to be

included in the web view
getExportSimulinkSubSystems Paths and handles of subsystem blocks to be

included in this web view
getExportStateflowCharts Paths and handles of Stateflow charts to be

included in this web view
getExportStateflowDiagrams Array of Stateflow diagram paths
getReportObject Returns the report object for the embedded web

view report

Compatibility Considerations
Items in table of contents are not numbered
Behavior changed in R2019b

Starting in R2019b, items in the table of contents in an embedded web view report are not numbered.
To generate numbered items in a table of contents:

1 Copy the default template for an embedded web view report to the current folder.
copyfile(fullfile(matlabroot,'/toolbox/slreportgen/webview/resources/templates/embedded_webview.htmtx'))

2 Unzip the template into the subfolder myTemplate.

unzipTemplate('embedded_webview.htmtx','myTemplate');
3 In myTemplate, navigate to the stylesheets subfolder. Open the root.css file and remove

this line from the ol.toc style:

list-style-type: none;
4 Save the root.css file.
5 Navigate to the folder that contains the original zipped template file. Package the unzipped

template files into a zipped template file.

zipTemplate('Newtemplate.htmtx','myTemplate');
6 Set the TemplatePath property of the embedded web view report generator object to the path

and name of the new template file. For example, suppose that MyEmbeddedWebView is a subclass

 slreportgen.webview.EmbeddedWebViewDocument class

7-5

of slreportgen.webview.EmbeddedWebViewDocument. Here is the code to set the
TemplatePath property of a MyEmbeddedWebView object:

rpt = MyEmbeddedWebView(rptName,model);
rpt.TemplatePath = 'NewTemplate.htmtx';

See Also
slreportgen.webview.ExportOptions

Topics
“Create an Embedded Web View Report Generator” on page 5-24
“Embedded Web View Reports” on page 5-20

Introduced in R2017a

7 Classes

7-6

slreportgen.report.Bus class
Package: slreportgen.report
Superclasses: slreportgen.report.Reporter

Reporter for buses selected or created by Simulink blocks

Description
Use an object of the slreportgen.report.Bus class to report on buses that are selected or
created by Simulink blocks.

A bus reporter finds buses to report by searching a model, subsystem, block, or signal for blocks that
select signals from a bus or combine signals to create a bus. For a model or subsystem, the Bus
reporter reports all of the buses selected or created in the model or subsystem. For a block, the
reporter reports the bus that is selected or created by the block. For a signal, the reporter reports all
of the buses selected or created by the blocks that are connected to the port specified by the signal.
Use the Object property to specify the model, subsystem, block, or signal for which to report buses.

By default, a Bus reporter generates:

• A hierarchical list of the signals in the bus
• A table with details about the selected signals or the signals used to create the bus
• Paragraphs with details about bus objects and connected blocks for each bus-related block found

Use the reporter properties to customize the content and appearance of the generated report. For
example, use the ReportedBlockType property to specify which types of blocks to use when
searching for buses.

Note To use an slreportgen.report.Bus reporter in a report, you must create the report using
the slreportgen.report.Report class or subclass.

The slreportgen.report.Bus class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
Description

busRptr = slreportgen.report.Bus() creates an slreportgen.report.Bus object with
default property on page 7-8 values. You must set the Object property to the model, block, or
signal for which you want to report buses. Use other properties to specify report options.

busRptr = slreportgen.report.Bus(object) sets the Object property to object.

 slreportgen.report.Bus class

7-7

busRptr = slreportgen.report.Bus(Name,Value) sets the Bus object properties on page 7-
8 using name-value pairs. You can specify multiple name-value pair arguments in any order.
Enclose each property name in single or double quotes.

Properties
Object — Model, block, or signal to search for buses
[] (default) | string scalar | character vector | handle | slreportgen.finder.DiagramResult
object | slreportgen.finder.BlockResult object | slreportgen.finder.SignalResult
object

Model, block, or signal to search for buses, specified as one of the following values:

Title — Title for each reported bus
[] (default) | string scalar | character vector | DOM object | function handle

Title for each reported bus, specified as a string scalar, character vector, DOM object, or function
handle. The contents of this property are reported with each bus included by the reporter. If this
property is empty, no title is reported.

If this property contains text or a function handle that returns text, the text is added to an
mlreportgen.dom.Paragraph object with the style BusTitleParagraph.

If this property is specified as a function handle, the function must return content that can be added
to a report, such as a string scalar, character vector, or DOM object. The function must accept a
struct with these fields:

For example: busRptr.Title = @(blkInfo) blkInfo.BlockName;

ReportedBlockType — Types of blocks used to report bus information
"auto" (default) | "all" | string array of block types | cell array of block types

Types of blocks used to report bus information, specified as one of these values:

For models or subsystems, the Bus reporter reports bus information from all blocks of the types that
this property specifies. For signals, the reporter reports bus information from all blocks of the
specified types that are connected to the signal (source and destination). For blocks, this property is
used only if the IncludeNestedBuses property is true. For Bus Selector and In Bus
Element blocks, the reporter reports bus information from all blocks of the specified type that are
connected to the output signals of the block. For Bus Creator, Bus Assignment, and Out Bus
Element blocks, the reporter reports bus information from all blocks of the specified type that are
connected to the input signals of the block.

IncludeNestedBuses — Whether to report nested buses
false (default) | true

Whether to report nested buses, specified as true or false. If this property is true, the reporter
reports bus-related blocks of the type specified by ReportedBlockType that are connected to the
selected signals or to signals used to create a bus. If this property is false and Object is a block,
the reporter reports only the block specified by Object. If this property is false and Object is a
signal, the reporter reports only the blocks directly connected to the signal.

7 Classes

7-8

If Object is a model or subsystem, this property has no effect because all blocks of the type specified
by the ReportedBlockType property are used to report buses.

ShowSignalHierarchy — Whether to report hierarchy of bus signals for each bus
false (default) | true

Whether to report the hierarchy of bus signals for each bus, specified as true or false. If this
property is true, the reporter includes a list of the names of signals in the bus. For blocks that create
buses, the list describes the signal hierarchy of the output bus. For blocks that select signals from
buses, the list describes the signal hierarchy of the input bus. If the bus includes any nested signals,
the signal names are included as a nested list.

The reporter does not include the signal hierarchy for buses created or selected by top-level model
input or output ports.

ShowSignalTable — Whether to report details of signals
true (default) | false

Whether to report details of signals, specified as true or false. If this property is true, the reporter
includes a table describing the signals selected from a bus or used to create a bus, depending on the
block type.

ShowBusObject — Whether to report name of Simulink.Bus object
true (default) | false

Whether to report the name of a Simulink.Bus object that is associated with the reported bus,
specified as true or false. If this property is true and the reported bus is described by a
Simulink.BusObject, the report includes the name of the bus object and links the name to the bus
object information reported elsewhere in the report.

The reporter does not include the bus object name for buses created or selected by top-level model
input or output ports.

ShowConnectedBlocks — Whether to report names of blocks connected to each full bus
signal
true (default) | false

Whether to report the names of blocks connected to each full bus signal, specified as true or false.
If this property is true:

The reporter does not include the names of connected blocks for buses created or selected by top-
level model input or output ports.

IncludeBusLinks — Whether to include link to bus created or selected by connected block
true (default) | false

Whether to include a link to a bus created or selected by a connected block, specified as true or
false. If this property is true, the reporter includes a link to the bus information for blocks that are
reported as a source or destination in the signal table or connected blocks sections. For blocks whose
block types are included in ReportedBlockTypes, a Bus Created or Signals Selected link is
included next to the block name.

 slreportgen.report.Bus class

7-9

IncludeBlockLinks — Whether to report block names as links to block details
false (default) | true

Whether to report block names as links to block details, specified as true or false. If this property
is true, a block name in a signal table title links to the block details reported elsewhere in the report.

IncludeSignalLinks — Whether to report port numbers as links to signal details
false (default) | true

Whether to report port numbers as links to signal details, specified as true or false. If this property
is true, the reporter reports signal port numbers in the signal table as links to the signal details
reported elsewhere in the report.

SelectorSignalProperties — Properties to report for selected bus signals
["Outport" "Name" "DataType" "Destination"] (default) | string array | cell array of
character vectors

Properties to report for the signals selected by Bus Selector or In Bus Element blocks, specified as a
string array or a cell array of character vectors. Specify any of these properties:

CreatorSignalProperties — Properties reported for signals used to create a bus
["Inport" "Name" "DataType" "Source"] (default) | string array | cell array of character
vectors

Properties to report for the signals used to create a bus by Bus Creator, Bus Assignment, and Out Bus
Element blocks, specified as a string array or a cell array of character vectors. Specify any of these
properties:

ShowEmptyColumns — Whether to show empty columns in signal table
false (default) | true

Whether to show empty columns in a signal table, specified as true or false.

SignalFilterFcn — Function or expression to filter signals in signal table
[] (default) | function handle | string scalar | character vector

Function or expression to filter signals in a signal table, specified as a function handle, string scalar,
or character vector. Specify a function as a function handle. Specify an expression as a string scalar
or character vector. The function or code is executed for each signal that is selected or used to create
a bus.

If TaskFilterFcn is empty, all tasks are included in the report.

If you provide a function handle, the associated function must:

For example, this code uses the SignalFilterFcn property to filter out the signals that feed into
the Display3 block:
import slreportgen.report.*
import mlreportgen.report.*

model_name = "sldemo_bus_arrays";
load_system(model_name);
rpt = slreportgen.report.Report("Bus_example","pdf");

7 Classes

7-10

append(rpt,slreportgen.report.Diagram(model_name));

ch = Chapter("Buses");

busRptr = Bus(model_name);
busRptr.SignalFilterFcn = @(~, ~, ~, destinationPath) endsWith(destinationPath,"Display3");

append(ch,busRptr);
append(rpt,ch);
close(rpt);
rptview(rpt);

If you provide a string scalar or a character vector, it must contain an expression. The expression:

For example, this code uses the SignalFilterFcn property to filter out the signals that feed into
the Display4 block:

import slreportgen.report.*
import mlreportgen.report.*

model_name = "sldemo_bus_arrays";
load_system(model_name);
rpt = slreportgen.report.Report("Bus_example","pdf");

append(rpt,slreportgen.report.Diagram(model_name));

ch = Chapter("Buses");

busRptr = Bus(model_name);
filterStr = "isFiltered = endsWith(destinationPath,""Display4"");";
busRptr.SignalFilterFcn = filterStr;

append(ch,busRptr);
append(rpt,ch);
close(rpt);
rptview(rpt);

TableReporter — Formatter for signal table
mlreportgen.report.BaseTable object

Formatter for signal table, specified as an mlreportgen.report.BaseTable object. The default
value of this property is a BaseTable object with the TableStyleName property set to the
BusTable style, which is defined in the default template for a Bus reporter. To customize the
appearance of the table, modify the properties of the default BaseTable object or replace the object
with your own BaseTable object. If you add content to the Title property of the BaseTable object,
the content appears in front of the table title in the generated report.

ListFormatter — Formatter for signal hierarchy list
mlreportgen.dom.OrderedList object | mlreportgen.dom.UnorderedList object

Formatter for the signal hierarchy list, specified as an mlreportgen.dom.OrderedList or
mlreportgen.dom.UnorderedList object. The formatter reports and formats the signal hierarchy
list if the ShowSignalHierarchy property of this Bus reporter is true. The OrderedList or
UnorderedList object must not contain list items.

The default value of this property is an UnorderedList object with the StyleName property set to
the BusList style, which is defined in the default template for a Bus reporter. To customize the
appearance of the list, modify the properties of the default UnorderedList object or replace the
object with your own UnorderedList or OrderedList object.

 slreportgen.report.Bus class

7-11

ParagraphFormatter — Paragraph formatter for connected blocks and bus object details
mlreportgen.dom.Paragraph object

Paragraph formatter to report and format the connected blocks and bus object details, specified as an
mlreportgen.dom.Paragraph object. The default value of this property is an
mlreportgen.dom.Paragraph object with the StyleName property set to the BusParagraph
style, which is defined in the default template for a Bus reporter. To customize the appearance of the
paragraph, modify the properties of the default mlreportgen.dom.Paragraph object or replace the
object with a customized mlreportgen.dom.Paragraph object. If you add content to the default or
replacement paragraph object, the content appears in front of the content reported for the connected
blocks and bus object details in the generated report.

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified in one of these ways:

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
"Bus" (default) | character vector | string scalar

Name of the template for this reporter, specified as a character vector or string scalar. The template
for this reporter must be in the template library of the template source specified by the
TemplateSrc property for this reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID, or an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
slreportgen.report.Bus.createTemplate Create bus reporter template
slreportgen.report.Bus.customizeReporter Create subclass of slreportgen.report.Bus class
slreportgen.report.Bus.getClassFolder Get location of folder that contains the

slreportgen.report.Bus class definition file
copy Create copy of a Simulink reporter object and make

deep copies of certain property values
getImpl Get implementation of reporter

Examples

7 Classes

7-12

Report Model Buses

Use an slreportgen.report.Bus object to report on the buses that are selected by the blocks in a
model.

Import the Report API packages so that you do not have to use long fully qualified class names.

import mlreportgen.report.*
import slreportgen.report.*

Load the model.

model_name = "sldemo_bus_arrays";
load_system(model_name);

Create a Simulink report.

rpt = slreportgen.report.Report("Bus_example","pdf");

Add the diagram of the model to the report.

append(rpt,slreportgen.report.Diagram(model_name));

Report the bus information for the model in a chapter.

ch = Chapter("Buses");
busRptr = Bus(model_name);

Use the block name as the title for each block bus.

busRptr.Title = @(blkInfo) blkInfo.BlockName;

Add the bus reporter to the chapter.

append(ch,busRptr);

Add the chapter to the report.

append(rpt,ch);
close(rpt);
rptview(rpt);

See Also
slreportgen.report.BusObject | slreportgen.finder.DiagramResult |
slreportgen.finder.BlockResult | slreportgen.finder.SignalFinder |
slreportgen.finder.SignalResult

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2021a

 slreportgen.report.Bus class

7-13

slreportgen.report.BusObject class
Package: slreportgen.report
Superclasses: slreportgen.report.Reporter

Simulink bus object reporter

Description
Creates a reporter that generates information about a Simulink.Bus object in a report.

Note To use a bus object reporter in a report, you must create the report using the
slreportgen.report.Report class or subclass.

The slreportgen.report.BusObject class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
Description

reporter = slreportgen.report.BusObject() creates an empty
slreportgen.report.BusObject reporter object. Customize the content and formatting of the
information reported for a bus object by using the reporter object properties. Before you add the
reporter to a report, you must set the Object property of the reporter to an
slreportgen.report.ModelVariableResult or Simulink.VariableUsage object that
specifies a Simulink.Bus object. Adding an empty reporter to a report produces an error.

reporter = slreportgen.report.BusObject(object) creates a reporter for the
Simulink.Bus object specified by an slreportgen.report.ModelVariableResult or
Simulink.VariableUsage object. See the Object property.

reporter = slreportgen.report.BusObject(Name,Value) sets the reporter properties using
name-value pairs. You can specify multiple name-value pair arguments in any order. Enclose each
property name in single or double quotes.

Properties
Object — Object that specifies a Simulink.Bus object
slreportgen.finder.ModelVariableResult object | Simulink.VariableUsage object

Object that specifies the Simulink.Bus object to report, specified as an
slreportgen.finder.ModelVariableResult object or a Simulink.VariableUsage object.

7 Classes

7-14

Name — Name of bus object
string scalar

This read-only property contains the name of bus object to report, specified as a string scalar.

ReportedBusProperties — Bus object properties to report
[] (default) | string array | cell array of character vectors

Bus object properties to report, specified as a string array or a cell array of character vectors. The
properties specified by the ReportedBusProperties property are further filtered by the
PropertyFilterFcn property. If the ReportedBusProperties property is empty, the reporter
includes all properties in the report, except the properties filtered by the PropertyFilterFcn
property. The reporter excludes any bus object property that is not valid for the bus object.

ReportedElementProperties — Bus element properties to report
[] (default) | string array | cell array of character vectors

Bus element properties to report, specified as a string array or a cell array of character vectors. The
properties specified by the ReportedElementProperties property are further filtered by the
function or code specified in the PropertyFilterFcn property. If the
ReportedElementProperties property is empty, the reporter includes all properties in the report,
except the properties filtered by the PropertyFilterFcn property. The reporter excludes any bus
element property that is not valid for the bus element.

ShowName — Whether to show name of bus
false (default) | true

Whether to show the name of the bus object in the report, specified as true or false.

ShowHierarchy — Whether to show hierarchy of the bus object
true (default) | false

Whether to include a nested list that represents the bus hierarchy in the report, specified as true or
false.

ShowProperties — Whether to show bus object properties
true (default) | false

Whether to show the bus object properties table in the report, specified as true or false.

ShowElements — Whether to show bus object elements properties
true (default) | false

Whether to show the bus element properties table in the report, specified as true or false.

ShowUsedBy — Whether to show blocks that use bus object
true (default) | false

Whether to show a list of the blocks that use the bus object, specified as true or false. If the
ShowUsedBy property is set to true, the reporter includes a list of the blocks that use the bus object
in the report. If the ShowUsedBySnapshot property is also set to true, the reporter includes a
diagram snapshot for each parent subsystem that uses the bus object. Blocks that use the bus object
are highlighted in the snapshot.

 slreportgen.report.BusObject class

7-15

ShowUsedBySnapshot — Whether to show diagram snapshots highlighting blocks that use
bus object
true (default) | false

Whether to show diagram snapshots of parent subsystems and highlight the blocks that use the bus
object, specified as true or false. If the ShowUsedBySnapshot property is set to true, the report
includes a snapshot for each parent subsystem that uses the bus object. Blocks that use the bus
object are highlighted in the snapshot. If a parent subsystem has more than one block that uses the
bus object, the reporter shows only one diagram snapshot that highlights the blocks that use the bus
object.

CreateSections — Whether to create sections
true (default) | false

Whether to create a separate section for each type of information about the bus object in the report.
If the CreateSections property is set to true, the reporter creates an
mlreportgen.report.Section with a title for each of these types of information:

If the CreateSections property is set to false, the reporter generates labels for tables and lists.
For a table, the reporter generates a table title. For a list, the reporter generates text that precedes
the list.

HierarchyListFormatter — List formatter for hierarchy
mlreportgen.dom.UnorderedList | mlreportgen.dom.OrderedList

List formatter that formats the generated bus hierarchy, specified as an
mlreportgen.dom.UnorderedList object or an mlreportgen.dom.OrderedList object. To
customize the list formatting, modify the list object properties or replace the list object with a
customized list object that does not contain list items.

UsedByListFormatter — List formatter for blocks that use the bus object
mlreportgen.dom.UnorderedList | mlreportgen.dom.OrderedList

List formatter that formats the generated list of blocks that use the bus object, specified as an
mlreportgen.dom.UnorderedList object or an mlreportgen.dom.OrderedList object. To
customize the list formatting, modify the list object properties or replace the list object with a
customized list object that does not contain list items.

PropertiesTableReporter — Table reporter for bus object properties
mlreportgen.report.BaseTable

Table reporter used to format the table of bus object properties, specified as an
mlreportgen.report.BaseTable object. To customize the appearance of the table, modify the
properties of the default table reporter or replace it with a customized table reporter. If you add
content to the Title property of the default or customized table reporter, the content appears in
front of the table title in the generated report.

ElementsTableReporter — Table reporter for bus element properties
mlreportgen.report.BaseTable

Table reporter used to format the table of bus element properties, specified as an
mlreportgen.report.BaseTable object. To customize the appearance of the table, modify the
properties of the default table reporter or replace it with a customized table reporter. If you add

7 Classes

7-16

content to the Title property of the default or customized table reporter, the content appears in
front of the table title in the generated report.

HorizontalElementsTable — Whether to display element properties horizontally
false (default) | true

Whether to display properties horizontally in the table of element properties, specified as true or
false.

If the HorizontalElementsTable property is set to true, the table has one column for each
property. For example:

If the HorizontalElementsTable property is set to false, the property and value cells in the row
for the element are split into multiple rows. For example:

SectionReporter — Section reporter
mlreportgen.report.Section

Reporter for formatting sections when the CreateSections property is set to true, specified as an
mlreportgen.report.Section object. To customize the appearance of the section, modify the
properties of the default section reporter or replace it with a customized section reporter.

PropertyFilterFcn — Function or expression to filter properties of a reported bus or bus
element
[] (default) | function handle | string scalar | character vector

Function or expression to filter the properties of a reported bus or bus element from a report. Specify
a function as a function handle. Specify an expression as a string scalar or character vector.

If you provide a function handle, the associated function must:

For example, this code prevents the display of the HeaderFile and Description properties of a
bus object and the Complexity property of a bus element:
import slreportgen.finder.*
import slreportgen.report.*

rpt = slreportgen.report.Report('busrpt','pdf');

 slreportgen.report.BusObject class

7-17

model = load_system('sldemo_bus_arrays');

modelVariableFinder = ModelVariableFinder(model);
results = find(modelVariableFinder);
for result = results
 if isa(getVariableValue(result),'Simulink.Bus')
 busRptr = slreportgen.report.BusObject(result);
 busRptr.PropertyFilterFcn = @busPropertyFilter;
 % Create a Chapter
 chapter = mlreportgen.report.Chapter(busRptr.Name);
 add(chapter, busRptr);
 add(rpt,chapter)
 end
end
close(rpt);

close_system(model);
rptview(rpt);

function tf = busPropertyFilter(~, variableObject,propertyName)
if isa(variableObject, 'Simulink.Bus')
 tf = (propertyName == "HeaderFile") || ...
 (propertyName == "Description");
else
 % Filter Simulink.BusElement Complexity property
 tf = propertyName == "Complexity";
end
end

If you provide a string scalar or a character vector, it must contain an expression. The expression:

For example, this code filters the HeaderFile property of a bus object from the report:

import slreportgen.finder.*
import slreportgen.report.*

rpt = slreportgen.report.Report('busrpt','pdf');

model = load_system('sldemo_bus_arrays');

modelVariableFinder = ModelVariableFinder(model);
results = find(modelVariableFinder);
for result = results
 if isa(getVariableValue(result),'Simulink.Bus')
 busRptr = slreportgen.report.BusObject(result);
 busRptr.PropertyFilterFcn = "isFiltered = " + ...
 "isa(variableObject, 'Simulink.Bus') && " + ...
 "propertyName == 'HeaderFile';";
 % Create a Chapter
 chapter = mlreportgen.report.Chapter(busRptr.Name);
 add(chapter, busRptr);
 add(rpt,chapter)
end
end
close(rpt);

close_system(model);
rptview(rpt);

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

7 Classes

7-18

Source of the template for this reporter, specified in one of these ways:

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

Name of the template for this reporter, specified as a character vector or string scalar. The template
for this reporter must be in the template library of the template source (TemplateSrc) for this
reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID, or an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
slreportgen.report.BusObject.createTemplate Create bus object reporter template
slreportgen.report.BusObject.customizeReporter Create custom bus object reporter
slreportgen.report.BusObject.getClassFolder Bus object reporter class definition file location
copy Create copy of a Simulink reporter object and

make deep copies of certain property values
getImpl Get implementation of reporter

Examples

Report on Bus Objects Using Bus Object Reporters

Report on bus objects in a model by using a model variable finder to find all variables used in the
model and then creating a bus reporter for each variable that is a bus object.

% Create a Report
rpt = slreportgen.report.Report("MyReport","pdf");
open(rpt);

% Load a model
model_name = "sldemo_bus_arrays";
load_system(model_name);

% Find all variables used by the model
finder = slreportgen.finder.ModelVariableFinder(model_name);

% Create a Bus object reporter object for all results representing a
% Simulink.Bus object

 slreportgen.report.BusObject class

7-19

while hasNext(finder)
 result = next(finder);
 if isa(getVariableValue(result), "Simulink.Bus")
 % Create a Bus object reporter
 busReporter = slreportgen.report.BusObject(result);
 % Create a Chapter
 chapter = mlreportgen.report.Chapter(busReporter.Name);
 % Add bus to chapter
 add(chapter, busReporter)
 % Add chapter to the report
 add(rpt,chapter);
 end
end

% Close and view the report
close(rpt);
rptview(rpt);

Customize the Reported Content and Formatting for Bus Objects

Customize the reported content and formatting of the content by setting properties of the bus object
reporter. This example uses the ReportedElementProperties property to constrain the element
properties that are reported. It uses the HorizontalElementsTable property to generate a properties
table with one column for each property.

% Create a Report
rpt = slreportgen.report.Report("MyReport","pdf");
open(rpt);

% Load a model
model_name = "sldemo_bus_arrays";
load_system(model_name);

% Find all variables used by the model
finder = slreportgen.finder.ModelVariableFinder(model_name);

% Create a Bus object reporter object for all results representing a
% Simulink.BusObject object
while hasNext(finder)
 result = next(finder);
 if isa(getVariableValue(result), "Simulink.Bus")
 % Create a Bus object reporter
 busReporter = slreportgen.report.BusObject(result);
 % Limit the properties that are reported
 busReporter.ReportedElementProperties = {'Name','DataType','Min','Max'};
 % Display element properties horizontally
 busReporter.HorizontalElementsTable = true;
 % Create a Chapter
 chapter = mlreportgen.report.Chapter(busReporter.Name);
 % Add bus to chapter
 add(chapter, busReporter)
 % Add chapter to the report
 add(rpt,chapter);
 end
end

% Close and view the report

7 Classes

7-20

close(rpt);
rptview(rpt);

See Also
Simulink.findVars | Simulink.VariableUsage |
slreportgen.finder.ModelVariableResult | slreportgen.report.ModelVariable |
slreportgen.finder.ModelVariableFinder | slreportgen.report.Bus

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2019b

 slreportgen.report.BusObject class

7-21

slreportgen.report.CFunction class
Package: slreportgen.report

C Function block reporter

Description
Use an object of the slreportgen.report.CFunction class to report on a C Function block.

By default, a CFunction object reports:

• A table that includes the Description parameter and any custom mask parameters
• A table that lists the contents of the Symbols parameter
• Sections for the C code defined by the Output Code, Start Code, and Terminate Code

parameters

Use the object properties to exclude or modify the reported information.

Note To use a CFunction reporter in a report, you must create the report using the
slreportgen.report.Report class.

The slreportgen.report.CFunction class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
Description

rptr = slreportgen.report.CFunction() creates a CFunction object with default property
values. You must specify the C Function block to report by setting the Object property. Use other
properties to specify report options.

rptr = slreportgen.report.CFunction(cFunctionBlock) specifies the C Function block to
report and sets the Object property to cFunctionBlock.

rptr = slreportgen.report.CFunction(Name=Value) sets properties using name-value
arguments. For example, rptr =
slreportgen.report.CFunction(Object="slrgex_cfunction/C Function") sets the
Object property to "slrgex_cfunction/C Function". You can specify multiple name-value
arguments.

7 Classes

7-22

Properties
Object — Simulink C Function block to report
[] (default) | string scalar | character vector | handle | slreportgen.report.BlockResult object

Simulink C Function block to report, specified as one of these values:

Note If you use a finder to find C Function blocks and add the results directly to a report, the blocks
are reported using slreportgen.report.CFunction reporters, instead of
slreportgen.report.SimulinkObjectProperties reporters.

IncludeObjectProperties — Whether to include table of block parameters
true (default) | false

Whether to include a table of block parameters, specified as true or false. If this property is true,
the reporter generates a table that includes the Description parameter and any custom mask
parameters, by default. The Output Code, Start Code, Terminate Code, and Symbols parameters
are not included in this table because they are reported in separate sections. Use the
ObjectPropertiesReporter property of this reporter to specify the parameters that the table
includes or to customize the table format. If the parameters are empty, the reporter does not
generate a table.

Attributes:

GetAccess public
SetAccess public

IncludeSymbols — Whether to include symbols table
true (default) | false

Whether to include a table of the symbols used by the C Function block, specified as true or false.

Attributes:

GetAccess public
SetAccess public

IncludeOutputCode — Whether to include output code
true (default) | false

Whether to include the C code used to compute the outputs of the C Function block, specified as
true or false.

Attributes:

GetAccess public
SetAccess public

IncludeStartCode — Whether to include start code
true (default) | false

Whether to include the C code used to compute the starting state of the C Function block, specified
as true or false.

 slreportgen.report.CFunction class

7-23

Attributes:

GetAccess public
SetAccess public

IncludeTerminateCode — Whether to include terminate code
true (default) | false

Whether to include the C code that the C Function block executes when it terminates, specified as
true or false.

Attributes:

GetAccess public
SetAccess public

ObjectPropertiesReporter — Formatter for block properties table
slreportgen.report.SimulinkObjectProperties object

Formatter for the C Function block properties table, specified as an
slreportgen.report.SimulinkObjectProperties object. The default value of this property is
an empty slreportgen.report.SimulinkObjectProperties object. You can customize the
appearance of the block properties table by modifying the properties of the default object or by
replacing it with another SimulinkObjectProperties object. You can specify the properties to
display in this table by using the Properties property of the SimulinkObjectProperties object.
If Properties is empty, the reporter automatically determines which properties to display based on
the C Function block parameters.

Attributes:

GetAccess public
SetAccess public

SymbolsReporter — Formatter for symbols table
mlreportgen.report.BaseTable object

Formatter for the table of symbols used by the C Function block, specified as an
mlreportgen.report.BaseTable object. The default value of this property is an empty
BaseTable object with the StyleName property set to "CFunctionSymbolsTable". You can
customize the appearance of the table of symbols by modifying the properties of the default object or
by replacing it with another BaseTable object. Any content added to the title property of the
BaseTable object appears before the default generated table title in the report.

Attributes:

GetAccess public
SetAccess public

Data Types:

CodeTitleFormatter — Paragraph formatter for code section titles
mlreportgen.dom.Paragraph object

Paragraph formatter for the titles of the output, start, and terminate code sections of the report,
specified as an mlreportgen.dom.Paragraph object. The default value of this property is an empty
Paragraph object with the StyleName property set to "CFunctionCodeTitle". You can customize

7 Classes

7-24

the appearance of the code section titles by modifying the properties of the default object or by
replacing it with another Paragraph object. Any content added to the Paragraph object in this
property appears before the code titles in the report.

Attributes:

GetAccess public
SetAccess public

Data Types:

CodeFormatter — Formatter for C code
mlreportgen.dom.Preformatted object

Formatter for the C code in the output, start and terminate code sections of the report, specified as
an mlreportgen.dom.Preformatted object. The default value of this property is an empty
Preformatted object with StyleName set to "CFunctionCode". You can customize the
appearance of the C code by modifying the properties of the default object or by replacing it with
another Preformatted object. Any content added to the Preformatted object in this property
appears before the formatted code in the report.

Attributes:

GetAccess public
SetAccess public

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified in one of these ways:

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

Attributes:

GetAccess public
SetAccess public

TemplateName — Name of template for this reporter
character vector | string scalar

Name of the template for this reporter, specified as a character vector or string scalar. The template
for this reporter must be in the template library of the template specified by the TemplateSrc
property of this reporter.

Attributes:

GetAccess public
SetAccess public

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

 slreportgen.report.CFunction class

7-25

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID, or an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Attributes:

GetAccess public
SetAccess public

Methods
Public Methods
slreportgen.report.CFunction.createTemplate Create C Function block reporter template
slreportgen.report.CFunction.customizeReporter Create subclass of slreportgen.report.CFunction

class
slreportgen.report.CFunction.getClassFolder Get location of folder that contains the

slreportgen.report.CFunction class definition file
copy Create copy of a Simulink reporter object and

make deep copies of certain property values
getImpl Get implementation of reporter

Examples

Report on a C Function Block

This example generates a report that includes information about a C Function block used in a model.

Import the Report API packages so that you do not have to use long, fully qualified class names.

import mlreportgen.report.*
import slreportgen.report.*

Create a report.

rpt = slreportgen.report.Report("output","pdf");

Load a model that has a C Function block.

model_name = "slrgex_cfunction";
cFcnObj = "slrgex_cfunction/C Function";
load_system(model_name);

Create a chapter reporter.

chapter = Chapter(cFcnObj);

Create a C Function block reporter. By default, the reporter includes the Output Code, Start Code,
Terminate Code, and Symbols parameters, as well as any other block parameters in the report. The
Terminate Code parameter of the C Function block in this example is empty.

rptr = CFunction(cFcnObj);

Add the C Function reporter to the chapter and chapter to the report.

7 Classes

7-26

append(chapter,rptr);
append(rpt,chapter);

Close and view the report.

close(rpt);
close_system(model_name);
rptview(rpt);

Here is the C Function block information in the report:

See Also
slreportgen.report.Report | slreportgen.finder.BlockFinder |
slreportgen.finder.BlockResult | slreportgen.report.SimulinkObjectProperties

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2021b

 slreportgen.report.CFunction class

7-27

slreportgen.report.DataDictionary class
Package: slreportgen.report
Superclasses: slreportgen.report.Reporter

Simulink data dictionary reporter

Description
Use an object of the slreportgen.report.DataDictionary class to report on a Simulink data
dictionary. Create a DataDictionary object to report on a specific data dictionary. Alternatively, use
an slreportgen.finder.DataDictionaryFinder object to find data dictionaries and use the
getReporter method of an slreportgen.finder.DataDictionaryResult object to return the
reporter for the result.

Note To use an slreportgen.report.DataDictionary reporter in a report, you must create the
report using the slreportgen.report.Report class or subclass.

The slreportgen.report.DataDictionary class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
Description

reporter = slreportgen.report.DataDictionary() creates a DataDictionary reporter
object based on the default template. Use the reporter properties to specify a data dictionary and
report options. You must specify the data dictionary to report. Adding an empty data dictionary
reporter object to a report produces an error.

reporter = slreportgen.report.DataDictionary(dictionaryName) creates a
DataDictionary reporter object and sets the Dictionary property to the specified data dictionary.
Use the reporter properties to specify report options.

reporter = slreportgen.report.DataDictionary(Name,Value) sets the reporter properties
using name-value pairs. You can specify multiple name-value pair arguments in any order. Enclose
each property name in single or double quotes.

Properties
Dictionary — Data dictionary to report
character vector | string scalar

7 Classes

7-28

Data dictionary to report, specified as a character vector or string scalar that contains the file name
of a dictionary on the MATLAB path or the path and file name of a data dictionary. The path can be
relative or absolute.
Example: "sldemo_fuelsys_dd.sldd"
Example: "myDictionaries/myDataDictionary.sldd"

Attributes:

GetAccess public
SetAccess public

SummaryProperties — Properties to report
["Name" "Value" "Class" "LastModified" "LastModifiedBy" "Status"
"DataSource"] (default) | string array | cell array of character vectors

Properties to report for each data dictionary entry in the summaries table, specified as a string array
or cell array of character vectors. Valid properties are:

The Value entry contains the value if the data type is numeric scalar, logical scalar, string scalar, or
character vector. Otherwise, the Value entry is See details.
Example: ["Name" "Value" "Class" "LastModified" "LastModifiedBy" "Status"
"DataSource"]

Example: {'Name' 'Value' 'Class'}

Attributes:

GetAccess public
SetAccess public

ShowDesignData — Whether to report Design Data section
true (default) | false

Whether to report the Design Data section of the data dictionary, specified as true or false.

Attributes:

GetAccess public
SetAccess public

Data Types: logical

ShowConfigurations — Whether to report Configurations section
false (default) | true

Whether to report the Configurations section of the data dictionary, specified as true or false.

Attributes:

GetAccess public
SetAccess public

Data Types: logical

 slreportgen.report.DataDictionary class

7-29

ShowOtherData — Whether to report Other Data section
false (default) | true

Whether to report the Other Data section of the data dictionary, specified as true or false.

Attributes:

GetAccess public
SetAccess public

Data Types: logical

IncludeReferencedDictionaries — Whether to include referenced dictionaries
true (default) | false

Whether to include the dictionaries that are referenced by the dictionary that this reporter reports,
specified as true or false. The ReferencedDictionaryPolicy property determines how
referenced dictionaries are reported.

Attributes:

GetAccess public
SetAccess public

Data Types: logical

ReferencedDictionaryPolicy — Display policy for referenced dictionary
"SameTable" (default) | character vector | string scalar

Display policy for reporting a referenced dictionary, specified as one of these values:

Attributes:

GetAccess public
SetAccess public

EntryFilterFcn — Data dictionary entry filter
[] (default) | function handle | string scalar | character vector

Data dictionary entry filter, specified as a function handle, string scalar, or character vector. If you do
not provide EntryFilterFcn, all entries are included in the report.

If you provide a function handle, the associated function must:

For example, this code uses the EntryFilterFcn property to prevent reporting of entries that are
Simulink.Parameter objects:
rpt = slreportgen.report.Report("MyReport","pdf");
ddPath = which("slrgex_fuelsys.sldd");

ch = mlreportgen.report.Chapter("slrgex_fuelsys.sldd");
rptr = slreportgen.report.DataDictionary(ddPath);

filterFcnHandle = @(entryObject, entryValue) ...
 isa(entryValue,"Simulink.Parameter");
rptr.EntryFilterFcn = filterFcnHandle;

append(ch,rptr);

7 Classes

7-30

append(rpt,ch);

close(rpt);
rptview(rpt);

If you provide a string scalar or a character vector, it must contain an expression. The expression:

For example, this code uses the EntryFilterFcn property to prevent reporting of entries that are
Simulink.Bus objects:

rpt = slreportgen.report.Report("MyReport","pdf");
ddPath = which("slrgex_fuelsys.sldd");

ch = mlreportgen.report.Chapter("slrgex_fuelsys.sldd");
rptr = slreportgen.report.DataDictionary(ddPath);
filterStr = "isFiltered = isa(entryValue,'Simulink.Bus');";
rptr.EntryFilterFcn = filterStr;

append(ch,rptr);
append(rpt,ch);

close(rpt);
rptview(rpt);

Attributes:

GetAccess public
SetAccess public

SummaryTableReporter — Formatter for entry summary tables
mlreportgen.report.BaseTable object

Formatter for the entry summary tables, specified as an mlreportgen.report.BaseTable object.
The default value of this property is a BaseTable object with the TableStyleName property set to
the DataDictionaryTable style which is defined in the default template for a DataDictionary
reporter. To customize the appearance of the table, modify the properties of the default BaseTable
object or replace the object with a customized BaseTable reporter. If you add content to the Title
property, the content appears in front of the table title in the generated report.

Attributes:

GetAccess public
SetAccess public

DetailsReporter — Formatter for reporting design data and other data entry details
mlreportgen.report.MATLABVariable object

Formatter for reporting the details of the entry values in the Design Data and Other Data sections
of the data dictionary, specified as an mlreportgen.report.MATLABVariable object. The default
value of this property is a MATLABVariable object with default property values. To customize the
appearance of the entry details, modify the properties of the default MATLABVariable object or
replace the object with your own MATLABVariable reporter. The Variable, Location, and
LinkTarget properties of the MATLABVariable reporter are ignored.

 slreportgen.report.DataDictionary class

7-31

Attributes:

GetAccess public
SetAccess public

ConfigurationReporter — Formatter for reporting configuration entry details
slreportgen.report.ModelConfiguration object

Formatter for reporting the details about the entry values in the Configurations section of a data
dictionary, specified as an slreportgen.report.ModelConfiguration object. The default value
of this property is a ModelConfiguration object with default property values. To customize the
appearance of the entry details, modify the properties of the default object or replace it with your
own ModelConfiguration object. The Model and LinkTarget properties of the reporter are
ignored.
Attributes:

GetAccess public
SetAccess public

ListFormatter — List formatter for referenced dictionary list
mlreportgen.dom.UnorderedList object | mlreportgen.dom.OrderedList object

List formatter for a referenced dictionary list, specified as an mlreportgen.dom.UnorderedList
object or mlreportgen.dom.OrderedList object. The list formatter is used when the
ReferencedDictionaryPolicy property is set to "List". The UnorderedList or OrderedList
object must not contain list items.

The default value of this property is an UnorderedList object with the StyleName property set to
the DataDictionaryList style, which is defined in the default template of a DataDictionary
reporter. To customize the appearance of the list, modify the properties of the default
UnorderedList object or replace the object with your own UnorderedList or OrderedList
object.
Attributes:

GetAccess public
SetAccess public

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified in one of these ways:

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.
Attributes:

GetAccess public
SetAccess public

TemplateName — Name of template for this reporter
character vector | string scalar

7 Classes

7-32

Name of the template for this reporter, specified as a character vector or string scalar. The template
for this reporter must be in the template library of the template specified by the TemplateSrc
property of this reporter.

Attributes:

GetAccess public
SetAccess public

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID, or an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Attributes:

GetAccess public
SetAccess public

Methods
Public Methods
slreportgen.report.DataDictionary.createTemplate Copy the default

slreportgen.report.DataDictionary reporter
template

slreportgen.report.DataDictionary.customizeReporter Create subclass of
slreportgen.report.DataDictionary class

slreportgen.report.DataDictionary.getClassFolder Get location of folder that contains the
slreportgen.report.DataDictionary class
definition file

copy Create copy of a Simulink reporter object and
make deep copies of certain property values

getImpl Get implementation of reporter

Examples

Report on Data Dictionary

Use an object of the slreportgen.report.DataDictionary class to report on a Simulink data
dictionary.

Import the MATLAB Report and Simulink Report API packages so that you do not have to use long,
fully qualified class names.

import slreportgen.report.*
import mlreportgen.report.*

Create a Simulink report.

rpt = slreportgen.report.Report("MyReport","pdf");

 slreportgen.report.DataDictionary class

7-33

Specify the path of the data dictionary used by the model slrgex_fuelsys.

ddPath = which("slrgex_fuelsys.sldd");

Create a chapter for the data dictionary information.

ch = Chapter("slrgex_fuelsys.sldd");

Create a reporter for the data dictionary.

rptr = DataDictionary(ddPath);

Append the reporter to the chapter and the chapter to the report.

append(ch,rptr);
append(rpt,ch);

Close and view the report.

close(rpt);
rptview(rpt);

See Also
slreportgen.finder.DataDictionaryFinder |
slreportgen.finder.DataDictionaryResult | slreportgen.report.Report

Topics
“What Is a Data Dictionary?”
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2020b

7 Classes

7-34

slreportgen.report.Diagram class
Package: slreportgen.report

Create diagram reporter

Description
Create a diagram reporter, including a diagram snapshot and caption, for a Simulink or Stateflow
diagram.

Note To use a Diagram reporter in a report, you must create the report using the
slreportgen.report.Report class.

Construction
diagram = Diagram() creates an empty diagram reporter. Set its properties to capture a Simulink
or Stateflow diagram.

diagram = Diagram(source) creates a diagram reporter for the Simulink or Stateflow diagram
specified by source. Adding this reporter to a report creates a snapshot of the diagram. Then, the
snapshot displays in the report as an image with a caption. The snapshot image is stored in the
temporary folder of the report. When the report is closed, the snapshot image is copied into the
report and then, the image is deleted from the temporary folder. To prevent the snapshot image file
from being deleted, use the Debug property of the report. See slreportgen.report.Report

diagram = Diagram(Name,Value) sets properties using name-value pairs. You can specify
multiple name-value pair arguments in any order. Enclose each property name in single or double
quotes.

Input Arguments

source — Diagram snapshot image source
string | character vector

See the Source property.

Properties
Source — Diagram snapshot image source
string scalar | character vector | handle | slreportgen.finder.DiagramResult | ...

Diagram snapshot image source, specified as one of these values.

• Name of an open or loaded Simulink model
• Path of a Simulink subsystem block that contains the Simulink diagram or Stateflow chart
• slreportgen.finder.DiagramResult object
• Handle to a subsystem block containing a Simulink diagram or Stateflow chart

 slreportgen.report.Diagram class

7-35

• Stateflow.Chart or Stateflow subchart object. Subcharts are graphical objects that can contain
the same objects as a top-level chart, including other subcharts. Subcharts are commonly
specified by a Stateflow.State, Stateflow.Function, or Stateflow.Box object.

Snapshot — Snapshot reporter
mlreportgen.report.FormalImage object

Snapshot reporter, set by default to an object of the mlreportgen.report.FormalImage class. You
do not need to set this property yourself. The FormalImage object adds the diagram snapshot to a
report. To control the size of the snapshot, set the mlreportgen.report.FormalImage properties.

SnapshotArea — Diagram area to capture in snapshot
[] (default) | 1-by-4 array of doubles

Diagram area to capture in the snapshot, specified as a 1-by-4 array of doubles. The first two values
of the array are the x and y coordinates, in pixels, of the top left corner of the diagram area in the
Simulink Editor coordinate space. The last two values are the width and height, in pixels. An empty
array specifies the entire diagram.

You can set up the view that you want to capture in the Simulink Editor and then set the
SnapshotArea property to the output of the slreportgen.utils.getCurrentEditorView
function. For an example, see “Take Snapshot of Part of a Diagram” on page 7-42.

SnapshotFormat — Snapshot image format
'svg' (default) | ...

Snapshot image format, specified as a character vector or string scalar. Supported formats are:

• 'bmp' — Bitmap image.
• 'gif' — Graphics Interchange format.
• 'jpg' — JPEG image.
• 'png' — PNG image.
• 'emf' — Enhanced metafile, supported only in DOCX output on Windows platforms.
• 'svg' — Scalable Vector Graphics.
• 'tif' — Tag Image File format, not supported in HTML output.
• 'pdf' — PDF image.

See “Compatibility Considerations” on page 7-43.

HyperlinkDiagram — Hyperlinks of diagram elements
true (default) | false

Choice to include a hyperlink of each diagram element, specified as a logical. If this property is true,
each element becomes a hyperlink to an object in the report that describes it. This property applies
only to PDF and HTML reports. Hyperlinks allow you to navigate the report using Simulink and
Stateflow charts.

The Diagram, SimulinkObjectProperties, and StateflowObjectProperties reporters work
together to enable navigation using hyperlinks. Each reporter prefaces the report object it creates
with a hyperlink target. The ID of that target is based on the path of the reported element in the
model. The Diagram reporter also overlays elements of a diagram snapshot with hyperlinks to the

7 Classes

7-36

corresponding element-based target ID. The report object to which a diagram element links depends
on the element type.

• A diagram-based block (subsystem, chart, model) links to the diagram of the block.
• Other blocks link to textual block descriptions, typically block property tables.
• Masked subsystem blocks that have mask parameters link to the textual description of the block,

such as the mask parameter tables. This linking to the textual descriptions is true only if the
MaskedSystemLinkPolicy property of the Diagram reporter is set to 'block' or 'default'.
Otherwise, the masked system block links to its diagram.

• Masked subsystem blocks that do not have mask parameters link to the diagram of the block.

To customize diagram-based navigation, create custom link targets based on target IDs generated by
the slreportgen.utils.getObjectID utility function.

MaskedSystemLinkPolicy — Policy for masked system blocks hyperlinks targets
character vector | string

Policy to determine the targets for the hyperlinks of masked system blocks, specified as one of these
values.

• 'default' — Masked system blocks that have parameters link to textual descriptions, such as
mask parameter tables. Masked system blocks that do not have parameters link to the
corresponding block diagram in the report.

• 'system' — Masked system blocks link to their block diagram in the report.
• 'block' — Masked system blocks link to their textual description, such as a table of masked

parameters or subsystem parameters.

Scaling — Scaling options for diagram snapshot image
auto (default) | custom | zoom

Scaling options for diagram snapshot image, specified as the string, auto, custom, or zoom.
Scaling controls size of the diagram snapshot image in the image file.

• auto — For PDF or Word (docx) output, auto scales the diagram snapshot image to fit in the
current page layout while maintaining its aspect ratio. First, the diagram snapshot image is scaled
to the page width. If the image height exceeds the page height, then the image is again scaled
down. This additional scaling assures that the image fits in the current page with an extra 1"
spacing. The extra spacing allows for extra text, such as a caption. Scaling does not apply to
HTML output.

• custom — Scales the diagram snapshot image based on the values of the Height and Width
properties

• zoom — Enlarges or reduces the snapshot image size to the percent value specified by the Zoom
property. To specify the maximum image height and maximum image width, use the MaxHeight
and MaxWidth properties, respectively.

Note A java.lang.OutOfMemoryError can occur when either of these combinations of property
settings occur:

• Scaling set to zoom, and Zoom, MaxHeight, and MaxWidth properties set to large values
• Scaling set to custom, and Height and Width properties set to large values

 slreportgen.report.Diagram class

7-37

To avoid this error, for zoom Scaling, use smaller Zoom, MaxHeight, and MaxWidth property
values. For custom Scaling, use smaller Height and Width property values. Using smaller values
ensures that the diagram fits on the page.

Height — Height of snapshot image
character vector | string scalar

Height of snapshot image, specified as a character vector or string scalar that consists of a number
followed by an abbreviation for a unit of measurement. For example, '2in' specifies two inches. Valid
abbreviations are:

• px — pixels (default)
• cm — centimeters
• in — inches
• mm — millimeters
• pc — picas
• pt — points

Example: '2in'

Width — Width of snapshot image
character vector | string scalar

Width of snapshot image, specified as a character vector or string scalar that consists of a number
followed by an abbreviation for a unit of measurement. For example, '2in' specifies two inches. Valid
abbreviations are:

• px — pixels (default)
• cm — centimeters
• in — inches
• mm — millimeters
• pc — picas
• pt — points

Example: '3in'

Zoom — Amount to zoom diagram snapshot image
string

Amount to zoom the diagram snapshot image, specified as a string. The Zoom format is value%,
where value is the percentage by which the diagram snapshot image is enlarged or reduced.

MaxHeight — Maximum height for zoom scaling
string

Maximum height for zoom scaling, specified as a string. This property applies only if Scaling is set
to zoom.

The MaxHeight format is valueUnits, where Units is an abbreviation for the height units and value is
the number of units. See the Height property for a table of valid Units abbreviations.

7 Classes

7-38

MaxWidth — Maximum width for zoom scaling
string

Maximum width for zoom scaling, specified as a string. This property applies only if Scaling is set to
zoom.

The MaxWidth format is valueUnits, where Units is an abbreviation for the height units and value is
the number of units. See the Height property for a table of valid Units abbreviations.

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified in one of these ways:

• Character vector or string scalar that specifies the path of the file that contains the template for
this reporter

• Reporter or report whose template is used for this reporter or whose template library contains the
template for this reporter

• DOM document or document part whose template is used for this reporter or whose template
library contains the template for this reporter

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

Name of the template for this reporter, specified as a character vector or string scalar. The template
for this reporter must be in the template library of the template source (TemplateSrc) for this
reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID, or an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods

createTemplate Create diagram template
customizeReporter Create custom diagram reporter class
getClassFolder Diagram class definition file location
getSnapshotImage Diagram snapshot image file location

 slreportgen.report.Diagram class

7-39

Inherited Methods

copy Create copy of a Simulink reporter object and
make deep copies of certain property values

getImpl Get implementation of reporter

Examples
Add Top Level of Model Diagram

Add a snapshot of the top level of the vdp model to a report.

load_system("slrgex_vdp")
import slreportgen.report.*
import mlreportgen.report.*
rpt = slreportgen.report.Report("output","pdf");

chapter = Chapter();
chapter.Title = "Diagram Reporter Example";

diagram = Diagram("slrgex_vdp");
diagram.Snapshot.Caption = "The van der Pol Equation";
diagram.SnapshotFormat = "svg";
diagram.Snapshot.Height = "4in";

add(chapter,diagram);
add(rpt,chapter);
rptview(rpt);

7 Classes

7-40

Add Hyperlinked Diagram to a Report

Create a PDF report and add diagram snapshots of the root system and a subsystem from the
slrgex_sf_car model to it. Add a hyperlink to the transmission subsystem and add a paragraph as
the target for that link.

import mlreportgen.report.*
import slreportgen.report.*
import slreportgen.utils.*
import mlreportgen.dom.*
rpt = slreportgen.report.Report('output','pdf');
chapter = Chapter('slrgex_sf_car');

load_system('slrgex_sf_car');
diag1 = Diagram('slrgex_sf_car');
diag1.Snapshot.Caption = 'Root System: slrgex_sf_car';
add(chapter,diag1);
add(chapter,PageBreak);

diag2 = Diagram('slrgex_sf_car/Engine');
diag2.Snapshot.Caption = 'Subsystem: slrgex_sf_car/Engine';
add(chapter,diag2);
add(chapter, PageBreak);

para = Paragraph('Custom target for slrgex_sf_car/transmission');
id = getObjectID('slrgex_sf_car/transmission');
append(para,mlreportgen.dom.LinkTarget(id));

 slreportgen.report.Diagram class

7-41

add(chapter,para);
add(chapter,PageBreak);

add(rpt, chapter);
close(rpt);
rptview(rpt);

Take Snapshot of Part of a Diagram

Use the SnapshotArea property to specify the area of the diagram to capture in the snapshot. This
example sets up the view in the Simulink Editor and then sets the SnapshotArea property to that
view by calling slreportgen.utils.getCurrentEditorView.

Open the model.

f14

In the Simulink Editor, display the part of the diagram that you want to capture in the snapshot. Get
the current Simulink Editor view area by calling slreportgen.utils.getCurrentEditorView.

editorViewArea = getCurrentEditorView();

Create the report and diagram reporter. Set the diagram snapshot area to the current editor viewing
area. Add the diagram reporter to the report.

import slreportgen.report.*
import Slreportgen.utils.*
rpt = Report('output','pdf');

diag = Diagram('f14');
diag.SnapshotArea = editorViewArea;
add(rpt, diag);

7 Classes

7-42

close(rpt);
rptview(rpt);

Compatibility Considerations
Default value of SnapshotFormat is 'svg' for all report types
Behavior changed in R2019b

Starting in R2019b, Scalable Vector Graphics (SVG) images are supported for Word reports. For all
report types (HTML, PDF, and Word), the default value of the SnapshotFormat property is 'svg'
and a value of 'auto' indicates 'svg'. In previous releases, the default value of the
SnapshotFormat property was 'auto', which indicated 'svg' for HTML and PDF reports and
'emf' or 'png' for Word reports, depending on the platform.

Word reports that contain SVG images require Word 2016 or a later version. In MATLAB R2019b or a
later release, to generate a report with images that are compatible with earlier versions of Word, set
the SnapshotFormat property to a value other than 'svg'. To specify the image format used by
default in earlier releases of MATLAB, set SnapshotFormat to:

• 'emf' for a Windows platform
• 'png' for a UNIX® or Mac platform

See Also
slreportgen.report.Report | slreportgen.finder.DiagramFinder |
slreportgen.finder.DiagramElementFinder |
slreportgen.finder.SystemDiagramFinder | slreportgen.finder.ChartDiagramFinder |
slreportgen.finder.StateflowDiagramElementFinder |
slreportgen.finder.StateFinder | slreportgen.report.StateflowObjectProperties |
slreportgen.report.SimulinkObjectProperties | slreportgen.finder.BlockFinder |
slreportgen.finder.AnnotationFinder

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2017b

 slreportgen.report.Diagram class

7-43

slreportgen.report.DocBlock class
Package: slreportgen.report
Superclasses: slreportgen.report.Reporter

DocBlock reporter

Description
Use an object of the slreportgen.report.DocBlock class to report on a DocBlock block.

Note To use a DocBlock reporter in a report, you must create the report using the
slreportgen.report.Report class or subclass.

The reporter includes the DocBlock content in a report in one of these ways:

• Includes the actual content in the report
• Saves the content to an external file and adds a link to the file in the report
• Embeds the content as a file in the report and adds a link to the embedded file

The table shows when the reporter includes, links to, or embeds the content, depending on the
DocBlock content type, the report type, and the values of the ConvertHTML and EmbedFile
properties.

DocBlock
Content

Type

Report Type ConvertHT
ML

Property

EmbedFile
Property

Report Contains
DocBlock
Content

External
Link to

DocBlock
Content

File

Link to
Embedded
DocBlock
Content

File
text HTML N/A N/A yes no no
text HTML-FILE N/A N/A yes no no
text Word N/A N/A yes no no
text PDF N/A N/A yes no no

HTML HTML N/A N/A yes no no
HTML HTML-FILE N/A N/A yes no no
HTML PDF true N/A yes no no
HTML PDF false true no no yes
HTML PDF false false no yes no
HTML Word true N/A yes no no
HTML Word false N/A no yes no
RTF PDF N/A true no no yes
RTF PDF N/A false no yes no

7 Classes

7-44

DocBlock
Content

Type

Report Type ConvertHT
ML

Property

EmbedFile
Property

Report Contains
DocBlock
Content

External
Link to

DocBlock
Content

File

Link to
Embedded
DocBlock
Content

File
RTF Word N/A N/A yes no no
RTF HTML N/A true no no yes
RTF HTML N/A false no yes no
RTF HTML-FILE N/A N/A no yes no

The slreportgen.report.DocBlock class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
Description

rptr = slreportgen.report.DocBlock() creates an empty DocBlock reporter based on a
default template. Customize the content and format of the generated content by using the reporter
properties. Before you add the reporter to a report, you must specify the DocBlock in the Object
property of the reporter. Adding an empty reporter to a report produces an error.

rptr = slreportgen.report.DocBlock(docBlockObj) creates a DocBlock reporter for the
DocBlock specified by docBlockObj, which can be a DocBlock path or handle. See the Object
property.

rptr = slreportgen.report.DocBlock(Name,Value) sets the reporter properties using name-
value pairs. You can specify multiple name-value pair arguments in any order. Enclose each property
name in single or double quotes.

Properties
Object — Simulink DocBlock block
[] (default) | string scalar | character vector | handle

Simulink DocBlock block, specified as a string scalar or character vector that contains the path to a
DocBlock or as a handle to a DocBlock block.

Note If you use a finder to find DocBlock blocks and add the results directly to a report, DocBlock
reporters are used to report on the DocBlock blocks rather than Simulink object property reporters.

ImportTextInline — Whether to import text content in line
false (default) | true

 slreportgen.report.DocBlock class

7-45

Whether to import plain text content in line, specified as true or false. If ImportTextInline is
false, before the reporter appends the content to a hole, it wraps the content in one or more
paragraphs, depending on the value of the TexSep property. Set ImportTextInline to true to
append DocBlock text content to a hole in a paragraph (an inline hole).

TextSep — Separator for delimiting paragraphs in text content
"Ignore" (default) | "LineFeed" | "BlankLine"

Separator used to delimit paragraphs in plain text content, specified as one of the values in the table.
You can specify the value as a string scalar or a character vector.

Value Description
"Ignore" Wrap text in a single paragraph regardless of

whether it contains separators. (default)
"LineFeed" If a text segment ends with a line feed, wrap it in

a paragraph.
"BlankLine" If a text segment ends with a blank line, wrap it

in a paragraph.

ConvertHTML — Whether to include HTML content
true (default) | false

Whether to include HTML content, specified as true or false.This property applies only to Word
and PDF reports.

If the value is true, HTML content is converted to DOM objects and appended to a report.

If the value is false:

If the report is an HTML or HTML file report, the HTML content is included in the report, regardless
of the value of the ConvertHTML property.

EmbedFile — Whether to embed the content
false (default) | true

Whether to embed the content of a DocBlock block in the generated report, specified as true or
false. This property applies only to HTML or RTF content with PDF reports and to RTF content with
HTML reports. If the value is true, the reporter embeds the DocBlock content in the report and
inserts a hyperlink to the embedded file.

ParagraphFormatter — Paragraph formatter for plain text
mlreportgen.dom.Paragraph

Paragraph formatter object that formats plain text if the ImportTextInline property is false,
specified as an mlreportgen.dom.Paragraph object. The initial value of the
ParagraphFormatter property is an mlreportgen.dom.Paragraph object with default property
values. To customize the appearance of the paragraph, modify the mlreportgen.dom.Paragraph
object properties or replace the object with a customized mlreportgen.dom.Paragraph object. If
you add content to the default or replacement paragraph object, the content appears in front of the
DocBlock content in the generated report.

TextFormatter — Text formatter for plain text
mlreportgen.dom.Text

7 Classes

7-46

Text formatter object that formats plain text if the ImportTextInline property is true, specified as
an mlreportgen.dom.Text object. The initial value of the TextFormatter property is an
mlreportgen.dom.Text object with default property values. To customize the appearance of the
text, modify the mlreportgen.dom.Text object properties or replace the object with a customized
mlreportgen.dom.Text object. If you add content to the default or replacement paragraph object,
the content appears in front of the DocBlock content in the generated report.

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified in one of these ways:

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

Name of the template for this reporter, specified as a character vector or string scalar. The template
for this reporter must be in the template library of the template source (TemplateSrc) for this
reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID, or an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
slreportgen.report.DocBlock.createTemplate Create DocBlock reporter template
slreportgen.report.DocBlock.customizeReporter Create custom DocBlock reporter class
slreportgen.report.DocBlock.getClassFolder Get location of DocBlock reporter class definition

file
copy Create copy of a Simulink reporter object and

make deep copies of certain property values
getImpl Get implementation of reporter

Examples

Include DocBlock Content in a Report

Include the content from the Sensor Info DocBlock of the slrgex_fuelsys model in a report by
adding a DocBlock reporter to the report. Specify that paragraphs in the DocBlock are delimited by
a linefeed.

 slreportgen.report.DocBlock class

7-47

% Import the API package
import slreportgen.report.*
import mlreportgen.report.*

% Load the model
model_name = "slrgex_fuelsys";
load_system(model_name);
docBlock = "slrgex_fuelsys/To Controller/Sensor Info";

% Create a report
rpt = slreportgen.report.Report("output","pdf");

% Create a chapter reporter
chapter = Chapter(docBlock);

% Create a DocBlock reporter
% Specify that paragraphs are delimited by a linefeed
rptr = DocBlock(docBlock);
rptr.TextSep = "LineFeed";

% Add the DocBlock reporter to the chapter
% Add the chapter to the report
add(chapter, rptr);
add(rpt, chapter);

% Close and view the output report
close(rpt);
close_system(model_name);
rptview(rpt);

Here is the content from the Sensor Info DocBlock in the generated report:

7 Classes

7-48

See Also
slreportgen.finder.BlockFinder | DocBlock | slreportgen.utils.isDocBlock

Topics
“Reporting on DocBlock Blocks” on page 4-37
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2019b

 slreportgen.report.DocBlock class

7-49

slreportgen.report.ElementDiagram class
Package: slreportgen.report

Element diagram snapshot and caption reporter

Description
Create a Simulink or Stateflow element diagram reporter. When added to a report, the
ElementDiagram reporter creates a snapshot of an element. The reporter adds the snapshot to the
report in the form of an image with a caption. Use the “Source” on page 7-0 property to specify the
desired element.

Note To use an ElementDiagram reporter in a report, you must create the report using the
slreportgen.report.Report class.

Construction
diagram = ElementDiagram() creates an empty element diagram reporter. Set its properties to
capture a Simulink or Stateflow element snapshot.

diagram = ElementDiagram(source) creates a diagram reporter for an element of a block
diagram or chart specified by source. Adding this reporter to a report creates a snapshot of the
element's diagram and adds the snapshot, with a caption, to the report. The snapshot image file is
stored in the report's temporary folder. When the report is closed, the image file is copied into the
report and the temporary folder is deleted. To prevent the deletion, use the Debug property of the
report. See mlreportgen.report.Report.

Input Arguments

source — Diagram element source
character vector | string scalar | handle | object | slreportgen.finder.DiagramElementResult
object

See the Source on page 7-0 property.

Properties
Source — Diagram element source
character vector | string scalar | handle | object | slreportgen.finder.DiagramElementResult
object

Diagram element source, specified as one of these values:

• Character vector or string scalar that contains the path to a Simulink block or Stateflow chart
block

• Handle to a Simulink block or Stateflow chart block
• Stateflow object

7 Classes

7-50

• Simulink Identifier (SID) of a block, annotation, or Stateflow object
• slreportgen.finder.DiagramElementResult object

Note Simulink.Port objects are not valid sources for this reporter.

Snapshot — Snapshot reporter
mlreportgen.report.FormalImage object

Snapshot reporter, set by default to an object of the mlreportgen.report.FormalImage class. You
do not need to set this property yourself. The FormalImage object adds the element diagram
snapshot to a report. To control the size of the snapshot, set its
mlreportgen.report.FormalImage properties.

SnapshotFormat — Snapshot image format
'svg' (default) | ...

Snapshot image format, specified as a character vector or string scalar. Supported formats are:

• 'bmp' — Bitmap image.
• 'gif' — Graphics Interchange format.
• 'jpg' — JPEG image.
• 'png' — PNG image.
• 'emf' — Enhanced metafile, supported only in DOCX output on Windows platforms.
• 'svg' — Scalable Vector Graphics.
• 'tif' — Tag Image File format, not supported in HTML output.
• 'pdf' — PDF image.

See “Compatibility Considerations” on page 7-56.

Scaling — Options for scaling a diagram element image
string | character vector

Options for scaling a diagram element image, specified as a string or character vector. Valid scaling
options are:

• auto — For PDF or Word (docx) output, auto scales the element image to fit on a page while
maintaining its aspect ratio. First, the element image is scaled to the page width. If the image
height exceeds the page height, the image is again scaled down. This additional scaling ensures
that the image fits the current page with a 1" margin. The margin allows space for a caption.
Scaling does not apply to HTML output.

• custom — Sets the element image height and width to the values of this reporter's Height and
Width properties.

• zoom — Enlarges or reduces the element image size to the percent value specified by this
reporter's Zoom property. To specify the maximum image height and maximum image width, use
the MaxHeight and MaxWidth properties, respectively.

Note A java.lang.OutOfMemoryError can occur when either of these combinations of property
settings occur:

 slreportgen.report.ElementDiagram class

7-51

• Scaling set to zoom, and Zoom, MaxHeight, and MaxWidth properties set to large values
• Scaling set to custom, and Height and Width properties set to large values

To avoid this error, for zoom Scaling, use smaller Zoom, MaxHeight, and MaxWidth property
values. For custom Scaling, use smaller Height and Width property values. Using smaller values
ensures that the diagram fits on the page.

Height — Height of diagram element
string

Height to set diagram element image, specified as a string. This property applies only if this
reporter's Scaling property is set to custom.

The Height format is valueUnits, where Units is an abbreviation for the height units and value is the
number of units. The table shows the valid Units abbreviations.

Units Units Abbreviation
pixels px
centimeters cm
inches in
millimeters mm
picas pc
points pt

Width — Width of diagram element image
string

Width to set diagram element image, specified as a string. This property applies only if this reporter's
Scaling property is set to custom.

The Width format is valueUnits, where Units is an abbreviation for the height units and value is the
number of units. See the Height property for a table of valid Units abbreviations.

Zoom — Amount to zoom diagram element image
string

Amount to zoom the diagram element image, specified as a string. The Zoom format is value%, where
value is the percentage by which the diagram element image is enlarged or reduced.

MaxHeight — Maximum height for zoom scaling
string

Maximum height for zoom scaling, specified as a string. This property applies only if this reporter's
Scaling property is set to zoom. The MaxHeight format is valueUnits, where Units is an
abbreviation for the height units and value is the number of units. See this reporter's Height
property for a table of valid Units abbreviations.

MaxWidth — Maximum width for zoom scaling
string

Maximum width for zoom scaling, specified as a string. This property applies only if this reporter's
Scaling property is set to zoom. The MaxWidth format is valueUnits, where Units is an abbreviation

7 Classes

7-52

for the height units and value is the number of units. See this reporter's Height property for a table
of valid Units abbreviations.

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified in one of these ways:

• Character vector or string scalar that specifies the path of the file that contains the template for
this reporter

• Reporter or report whose template is used for this reporter or whose template library contains the
template for this reporter

• DOM document or document part whose template is used for this reporter or whose template
library contains the template for this reporter

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

Name of the template for this reporter, specified as a character vector or string scalar. The template
for this reporter must be in the template library of the template source (TemplateSrc) for this
reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID, or an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods

createTemplate Create element diagram template
customizeReporter Create custom element diagram reporter class
getClassFolder Element diagram class definition file location
getSnapshotImage Element diagram snapshot image file location

Inherited Methods

copy Create copy of a Simulink reporter object and
make deep copies of certain property values

getImpl Get implementation of reporter

 slreportgen.report.ElementDiagram class

7-53

Examples
Add Element Diagram and Caption

import slreportgen.report.*
import mlreportgen.report.*

load_system('f14')

rpt = slreportgen.report.Report("output","pdf");
open(rpt)
chap = Chapter();
chap.Title = "Element Diagram Reporter Example";

diag = ElementDiagram("f14/Actuator Model");
diag.Snapshot.Caption = "f14 Simulink Model - Actuator Model block";

add(chap,diag)
add(rpt,chap)

close(rpt)
rptview(rpt)

Add Element Diagrams and Property Tables

load_system('f14')
modelsys = "f14/Aircraft Dynamics Model";

rpt = slreportgen.report.Report("output","pdf");
open(rpt)
chapter = mlreportgen.report.Chapter();
chapter.Title = "Element Snapshots";

diag = slreportgen.report.ElementDiagram(modelsys);
add (chapter,diag)

7 Classes

7-54

blkfinder = slreportgen.finder.BlockFinder(modelsys);
blks = find(blkfinder);
for blk = blks
 blkDiag = slreportgen.report.ElementDiagram...
 (blk.Object);
 blkDiag.Snapshot.Caption = strcat(blk.DiagramPath,...
 "/", blk.Name);
 add(chapter,blkDiag) % Add diagram element image
 add(chapter,blk) % Add property table
end

add(rpt,chapter)
close(rpt)
rptview(rpt)

 slreportgen.report.ElementDiagram class

7-55

Compatibility Considerations
Default value of SnapshotFormat is 'svg' for all report types
Behavior changed in R2019b

7 Classes

7-56

Starting in R2019b, Scalable Vector Graphics (SVG) images are supported for Word reports. For all
report types (HTML, PDF, and Word), the default value of the SnapshotFormat property is 'svg'
and a value of 'auto' indicates 'svg'. In previous releases, the default value of the
SnapshotFormat property was 'auto', which indicated 'svg' for HTML and PDF reports and
'emf' or 'png' for Word reports, depending on the platform.

Word reports that contain SVG images require Word 2016 or a later version. In MATLAB R2019b or a
later release, to generate a report with images that are compatible with earlier versions of Word, set
the SnapshotFormat property to a value other than 'svg'. To specify the image format used by
default in earlier releases of MATLAB, set SnapshotFormat to:

• 'emf' for a Windows platform
• 'png' for a UNIX or Mac platform

See Also
slreportgen.finder.BlockFinder | slreportgen.finder.StateFinder |
slreportgen.report.Report | slreportgen.report.Diagram |
slreportgen.finder.DiagramElementFinder |
slreportgen.finder.StateflowDiagramElementFinder

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2018b

 slreportgen.report.ElementDiagram class

7-57

slreportgen.report.ExecutionOrder class
Package: slreportgen.report
Superclasses: slreportgen.report.Reporter

System task and block execution order reporter

Description
Use an object of the slreportgen.report.ExecutionOrder class to report the tasks of a model
or nonvirtual subsystem and the blocks in each task, sorted by execution order. By default, an
ExecutionOrder reporter generates:

• A table of task names and properties
• A list of the blocks in each task

Conditionally executed blocks, such as subsystems triggered by a function call or an If block, are not
displayed in the block execution order list. Instead, these blocks are displayed in a Conditional
Execution table that follows the block execution order list. The table lists the conditionally executed
blocks and the blocks that trigger their execution.

Use the ExecutionOrder reporter properties to filter the reported content and customize the
content formatting.

Note To use an slreportgen.report.ExecutionOrder reporter in a report, you must create the
report using the slreportgen.report.Report class or subclass. An ExecutionOrder reporter
does not generate content if it is added to an slreportgen.report.Report object that has the
CompileModelBeforeReporting set to false.

The slreportgen.report.ExecutionOrder class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
Description

reporter = slreportgen.report.ExecutionOrder() creates an empty ExecutionOrder
reporter object based on the default template. You must specify a model or subsystem for which to
report the execution order by setting the Object property. Use other properties to specify report
options.

reporter = slreportgen.report.ExecutionOrder(system) creates an ExecutionOrder
reporter and sets the Object property to the specified model or subsystem.

7 Classes

7-58

reporter = slreportgen.report.ExecutionOrder(Name,Value) sets the reporter properties
using name-value pairs. You can specify multiple name-value pair arguments in any order. Enclose
each property name in single or double quotes.

Properties
Object — Model or nonvirtual subsystem block to report
[] (default) | character vector | string scalar | handle | slreportgen.finder.DiagramResult
object | slreportgen.finder.BlockResult

Model or nonvirtual subsystem block to report, specified as one of these types of values:

Specifying a BlockResult or DiagramResult that represents an unloaded model or a virtual
subsystem results in an error.

ShowTaskDetails — Whether to include a task details table
true (default) | false

Whether to include a task details table, specified as true or false. If ShowTaskDetails is true,
the reporter generates a table that displays names and properties of tasks in the specified system.
Data Types: logical

ShowBlockExecutionOrder — Whether to include block execution order lists
true (default) | false

Whether to include block execution order lists, specified as true or false. If
ShowBlockEecutionOrder is true, the reporter includes a list of blocks, sorted in order of
execution, for each task in the system. Conditionally executed blocks, such as subsystems triggered
by a function call or If block, are not displayed in the execution order list. Instead, these blocks are
displayed in a Conditional Execution table that follows the block execution order list. The table
lists the conditionally executed blocks and the blocks that trigger their execution.
Data Types: logical

TaskProperties — Properties to report for task
["Order" "Name" "Type" "Trigger" "TaskID" "SourceBlock"] (default) | string array | cell
array of character vectors

Properties to report for each system task, specified as a string array or cell array of character
vectors. By default, all properties are included. Valid properties are:

Example: ["Order" "Name" "Type" "Trigger" "TaskID" "SourceBlock"]
Example: {'Order' 'Name' 'Type'}

ShowEmptyColumns — Whether to show empty columns in task details table
false (default) | true

Whether to show empty columns in the task details table, specified as true or false. If
ShowEmptyColumns is true, the task details table includes columns that do not have any data.
Data Types: logical

 slreportgen.report.ExecutionOrder class

7-59

ShowBlockType — Whether to show the block type in execution order lists
true (default) | false

Whether to show the type of each block in the block execution order lists, specified as true or
false. If ShowBlocktype is true, the reporter includes the type of each block next to the block
name in the execution order lists.
Data Types: logical

ShowHiddenBlocks — Whether to show blocks created at compile time
true (default) | false

Whether to show blocks created at compile time, specified as true or false. If ShowHiddenBlocks
is true, the reporter includes blocks that Simulink inserts when the model is compiled. If
ShowHiddenBlocks is false, the reporter includes only user-added blocks.
Data Types: logical

IncludeSubsystemBlocks — Whether to reference block lists of nonvirtual subsystems
true (default) | false

Whether to reference block lists of nonvirtual subsystems, specified as true or false. If
IncludeSubsystemBlocks is true, the reporter includes references to nonvirtual subsystem blocks.
The SubsystemBlocksDisplayPolicy property determines how the nonvirtual subsystem blocks are
referenced.
Data Types: logical

SubsystemBlocksDisplayPolicy — Policy for referencing execution order lists of blocks in
nonvirtual subsystems
"Link" (default) | "NestedList"

Policy for referencing execution order lists of blocks that are in nonvirtual subsystems, specified as
one of these string scalars or character vectors:

TaskFilterFcn — Function or expression to filter system tasks
[] (default) | function handle | string scalar | character vector

Function or expression to filter system tasks from a report, specified as a function handle, string
scalar, or character vector. Specify a function as a function handle. Specify an expression as a string
scalar or character vector. If TaskFilterFcn is empty, all tasks are included in the report.

If you provide a function handle, the associated function must:

For example, this code uses the TaskFilterFcn property to report only periodic tasks:
import slreportgen.finder.*
import slreportgen.report.*
import mlreportgen.report.*

model_name = "slrgex_vdp";
load_system(model_name);

rpt = slreportgen.report.Report("ExecutionOrder_example","html");

finder = DiagramFinder(model_name);

ch = Chapter("Diagrams");

7 Classes

7-60

while hasNext(finder)
 result = next(finder);
 % Only report block diagrams and nonvirtual subsystems
 if (strcmpi(result.Type,"Simulink.SubSystem")...
 && strcmpi(get_param(result.Object,"IsSubsystemVirtual"),"off")) ...
 || strcmpi(result.Type,"Simulink.BlockDiagram")
 sect = Section(result.Name);
 append(sect,result);
 % Create ExecutionOrder reporter and add to report
 rptr = ExecutionOrder(result);
 % Filter all but periodic tasks
 filterFcnHandle = @(taskName, taskType, trigger, sourceBlock) ...
 ~strcmpi(taskType, "Periodic");
 rptr.TaskFilterFcn = filterFcnHandle;
 append(sect,rptr);

 append(ch,sect);
 end
end

append(rpt,ch);
close(rpt);
rptview(rpt);

If you provide a string scalar or a character vector, it must contain an expression. The expression:

For example, this code uses the TaskFilterFcn property to report only periodic tasks:
import slreportgen.finder.*
import slreportgen.report.*
import mlreportgen.report.*

model_name = "slrgex_vdp";
load_system(model_name);

rpt = slreportgen.report.Report("ExecutionOrder_example","html");

finder = DiagramFinder(model_name);

ch = Chapter("Diagrams");
while hasNext(finder)
 result = next(finder);
 % Only report block diagrams and nonvirtual subsystems
 if (strcmpi(result.Type,"Simulink.SubSystem")...
 && strcmpi(get_param(result.Object,"IsSubsystemVirtual"),"off")) ...
 || strcmpi(result.Type,"Simulink.BlockDiagram")
 sect = Section(result.Name);
 append(sect,result);
 % Create ExecutionOrder reporter and add to report
 rptr = ExecutionOrder(result);
 % Filter all but periodic tasks
 % Code string to include only asynchronous tasks
 filterStr = "isFiltered = ~strcmpi(taskType, ""Periodic"");";
 rptr.TaskFilterFcn = filterStr;
 append(sect,rptr);

 append(ch,sect);
 end
end

append(rpt,ch);
close(rpt);
rptview(rpt);

TableReporter — Formatter for task details table
mlreportgen.report.BaseTable object

Formatter for the task details table, specified as an mlreportgen.report.BaseTable object. The
default value of this property is a BaseTable object with the TableStyleName property set to the

 slreportgen.report.ExecutionOrder class

7-61

ExecutionOrderTable style, which is defined in the default template for an ExecutionOrder
reporter. To customize the appearance of the table, modify the properties of the default BaseTable
object or replace the object with your own BaseTable object. If you add content to the Title
property of the BaseTable object, the content appears in front of the table title in the generated
report.

ListFormatter — Formatter for block execution order lists
mlreportgen.dom.OrderedList object | mlreportgen.dom.UnorderedList object

Formatter for the block execution order lists, specified as an mlreportgen.dom.OrderedList
object or mlreportgen.dom.UnorderedList object. The OrderedList or UnorderedList object
must not contain list items.

The default value of this property is an OrderedList object with the StyleName property set to the
ExecutionOrderList style, which is defined in the default template for an ExecutionOrder
reporter. To customize the appearance of the list, modify the properties of the default OrderedList
object or replace the object with a your own OrderedList or UnorderedList object.

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified in one of these ways:

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

Name of the template for this reporter, specified as a character vector or string scalar. The template
for this reporter must be in the template library of the template source (TemplateSrc) for this
reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID, or an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
slreportgen.report.ExecutionOrder.createTemplate Create execution order reporter template
slreportgen.report.ExecutionOrder.customizeReporter Create custom execution order reporter

class
slreportgen.report.ExecutionOrder.getClassFolder Get location of execution order reporter

class definition file

7 Classes

7-62

copy Create copy of a Simulink reporter object
and make deep copies of certain property
values

getImpl Get implementation of reporter

Examples

Report System Tasks and Task Blocks in Execution Order

For each block diagram or virtual subsystem of the slrgex_vdp model, report the system tasks and
the blocks in each task, in execution order.

Import the MATLAB and Simulink Report API packages so that you do not have to use long, fully
qualified class names.

import mlreportgen.report.*
import slreportgen.finder.*
import slreportgen.report.*

Open the model and create a report.

model_name = 'slrgex_vdp';
load_system(model_name);

rpt = slreportgen.report.Report("ExecutionOrder_example","pdf");

Create a finder to find all of the diagrams in the model. Create a Diagrams chapter.

finder = DiagramFinder(model_name);
ch = Chapter("Diagrams");

For each diagram that is a block diagram or a nonvirtual subsystem, report the system tasks and
blocks in execution order, using the default values of the slreportgen.report.ExecutionOrder
reporter properties.

while hasNext(finder)
 result = next(finder);
 if (strcmpi(result.Type,"Simulink.SubSystem") &&...
 strcmpi(get_param(result.Object,"IsSubsystemVirtual"),"off")) ...
 || strcmpi(result.Type,"Simulink.BlockDiagram")
 sect = mlreportgen.report.Section(result.Name);
 append(sect,result);
 rptr = slreportgen.report.ExecutionOrder(result);
 append(sect,rptr);
 append(ch,sect);
 end
end

Append the chapter to the report. Close and view the report.

append(rpt,ch);
close(rpt);
rptview(rpt);

 slreportgen.report.ExecutionOrder class

7-63

See Also
slreportgen.finder.BlockResult | slreportgen.finder.DiagramResult

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2020b

7 Classes

7-64

slreportgen.report.LookupTable class
Package: slreportgen.report
Superclasses: slreportgen.report.Reporter

Lookup table block reporter

Description
Create a Simulink lookup table block reporter. See the Object property for a list of supported blocks.

Note To use a LookupTable reporter in a report, you must create the report using the
slreportgen.report.Report class.

Construction
rptr = LookupTable() creates an empty LookupTable block reporter based on a default
template. Use its properties to specify the lookup table block on which to report and specify report
options.

rptr = LookupTable(lutobj) creates a LookupTable block reporter for the lookup table block
specified by lutobj. By default, the reporter generates a table and a plot of output values versus
breakpoints, and a data types table.

rptr = LookupTable(Name,Value) sets LookupTable reporter properties using name-value
pairs. You can specify multiple name-value pair arguments in any order. Enclose each property name
in single or double quotes.

Input Arguments

lutobj — Lookup table block object
path | handle

See the Object property.

Properties
Object — Lookup table block
path | handle

Lookup table block to report on, specified as the path or handle of the block.

These lookup table blocks are supported.

• 1-D Lookup Table
• 2-D Lookup Table
• n-D Lookup Table
• Interpolation Using Prelookup

 slreportgen.report.LookupTable class

7-65

• Direct Lookup Table (n-D)
• Lookup Table Dynamic

Note If you use a finder to find a Lookup Table block and add it directly to a report, this
LookupTable reporter is used rather than a Simulink object property reporter.

IncludeTable — Include table of lookup table data
true (default) | false

Whether to include a table of lookup table data, specified as a logical. If true, the report includes a
table that lists output values and breakpoints of the lookup table.

For a 1-D lookup table, the data table lists the breakpoints in the first column of the table. The second
column lists the corresponding output values.

For a 2-D or greater dimension lookup table, the data table lists the first set of breakpoints in the first
row of the table. It lists the second set of breakpoints in the first column. The output appears in the
corresponding table cells. For lookup tables greater than 2-D, the LookupTable report generator
shows slices of the table as separate output versus breakpoint tables.

IncludePlot — Include lookup table data plot
true (default) | false

Whether to include a lookup table data plot, specified as a logical. If true, the report includes a plot
of the output values versus the breakpoints of the lookup table block.

For a 1-D lookup table, the plot is a line plot of output values versus breakpoints.

For 2-D tables and slices, the plot is a surface or mesh plot of output values versus breakpoints. Use
the PlotType property to specify whether to use a surface or mesh plot.

PlotType — Plot type for 2-D lookup table data plot
'Surface Plot' (default) | 'Mesh Plot'

Plot type for a 2-D lookup table data plot, specified as either a character array ('Surface Plot' or
'Mesh Plot') or string ("Surface Plot" or "Mesh Plot").

DataReporter — Lookup table data reporter
BaseTable reporter (default) | custom reporter

Lookup table data reporter, specified as a BaseTable reporter or custom reporter. The
LookupTable reporter uses the specified reporter to create a table of lookup table data.

To customize the appearance of the table of lookup table data, customize the default BaseTable
reporter or replace it with a custom version of the BaseTable reporter.

To customize the title of the table of lookup table data, specify the contents in the Title property of
the default or replacement reporter. The content you specify is placed at the front of the default title.
If the lookup table is too wide to fit legibly on a page, use the MaxCols property of the
DataReporter to generate the table as a set of slices that fit legibly. To determine an optimal value,
iterate setting the MaxCols value and viewing the report .
Example: lutable.DataReporter.Title = 'New Title'

7 Classes

7-66

PlotReporter — Lookup table data plot reporter
Figure reporter (default) | custom reporter

Lookup table data plot reporter, specified as a Figure reporter or custom reporter. The
LookupTable reporter uses the specified reporter to create a plot of output values versus
breakpoints of the lookup table.

To customize the appearance of the plot of the lookup table data, customize the default Figure
reporter or replace it with a custom version of the Figure reporter. To customize the caption of the
plot, specify the contents in the Caption property of the default or replacement reporter. The
content you specify is placed at the front of the default caption.

MaxTableColumns — Maximum table columns to display
inf (default) | integer

Maximum number of table columns to display for the output values versus breakpoints, specified as
inf or an integer. This property applies only if the IncludeTable property is true.

If the number of lookup table columns is greater than the value of this property, the data is shown
only as a surface plot. The plot appears only if the IncludePlot property is true.

The default value of this property is inf, which causes the reporter to use a table regardless of the
size of the lookup table data array. Depending on the size of the data being displayed, some tables
can be illegible. To avoid creation of illegible tables, change the default setting of this property to a
smaller value.

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified in one of these ways:

• Character vector or string scalar that specifies the path of the file that contains the template for
this reporter

• Reporter or report whose template is used for this reporter or whose template library contains the
template for this reporter

• DOM document or document part whose template is used for this reporter or whose template
library contains the template for this reporter

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

Name of the template for this reporter, specified as a character vector or string scalar. The template
for this reporter must be in the template library of the template source (TemplateSrc) for this
reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID, or an mlreportgen.dom.LinkTarget object. A character vector or string scalar

 slreportgen.report.LookupTable class

7-67

value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
createTemplate Create Simulink lookup table block reporter template
customizeReporter Create custom LookupTable reporter class
getClassFolder Lookup Table reporter class definition file location

Inherited Methods

copy Create copy of a Simulink reporter object and
make deep copies of certain property values

getImpl Get implementation of reporter

Examples
Report on Lookup Table Block

Create a PDF report generator that reports on a lookup table block. This example uses the
slrgex_sf_car model and reports on its engine torque Lookup Table (n-D) block. This block is a
2-D lookup table. The engine torque block is in the Engine subsystem of the slrgex_sf_car
model. The report, by default, includes a table of output values versus breakpoints, a surface plot, a
table of block data types, and notes about possible differences between reported values and values
obtained from simulation.

import slreportgen.report.*
import mlreportgen.report.*

model_name = 'slrgex_sf_car';
load_system(model_name);
lutable = 'slrgex_sf_car/Engine/engine torque';

rpt = slreportgen.report.Report('output','pdf');
chapter = Chapter(lutable);
rptr = LookupTable(lutable);
add(chapter,rptr);
add(rpt,chapter);

close(rpt);
close_system(model_name);
rptview(rpt)

7 Classes

7-68

 slreportgen.report.LookupTable class

7-69

Change Lookup Table Plot Height and Width

Create a PDF report generator that specifies the plot height and width returned by the LookupTable
reporter. This example uses the slrgex_sf_car model and reports on its Torque ratio Lookup

7 Classes

7-70

Table (n-D) block. This block is a 1-D lookup table and is in the transmission/Torque Converter
subsystem of the slrgex_sf_car model. To set the height and width of the plot, use the
PlotReporter property.

import slreportgen.report.*
import mlreportgen.report.*

model_name = 'slrgex_sf_car';
load_system(model_name);
lutable = 'slrgex_sf_car/transmission/Torque Converter/Torque ratio';

rpt = slreportgen.report.Report('output','pdf');
chapter = Chapter(lutable);

rptr = LookupTable(lutable);
rptr.IncludeTable = false;
add(chapter,rptr);

rptr_resized = LookupTable(lutable);
rptr_resized.IncludeTable = false;
rptr_resized.PlotReporter.Snapshot.Width = '3in';
rptr_resized.PlotReporter.Snapshot.Height = '4in';
add(chapter,rptr_resized);

add(rpt,chapter);

close(rpt) ;
close_system(model_name)
rptview(rpt);

The default plot on the first page of the report uses predefined sizing to fit the plot to the page size.

The resized plot on the second page of the report uses the specified 3" width and 4" height.

 slreportgen.report.LookupTable class

7-71

Find and Report on Lookup Tables and Other Blocks

Create a PDF report generator that finds all blocks in the Engine subsystem of the slrgex_sf_car
model. The report generator program then loops through the blocks and tests whether the block is a
lookup table block. For lookup table blocks, it uses the LookupTable reporter to report information
about the block. For other blocks, the generated report reports on block properties, which are the
results of the BlockFinder class.

import slreportgen.report.*
import slreportgen.finder.*

model_name = 'slrgex_sf_car';
load_system(model_name)
subsys_name = 'slrgex_sf_car/Engine';
rpt = slreportgen.report.Report;

blkfinder = BlockFinder(subsys_name);
blks = find(blkfinder);

for i=1:length(blks)
 if slreportgen.utils.isLookupTable(blks(i).Object)
 rptr = LookupTable(blks(i).Object);
 ch = Chapter(blks(i).Name);
 add(ch,rptr);
 add(rpt,ch);
 else
 ch = Chapter(blks(i).Name);
 add(ch,blks(i));
 add(rpt,ch);
 end
end

close(rpt);
close_system(model_name);
rptview(rpt);

7 Classes

7-72

The first chapter shows the default properties reported for Inport block.

The fifth chapter shows the default output for a Lookup Table block reporter. The default output is a
table of output values versus breakpoints table, a plot, and a table of data types.

 slreportgen.report.LookupTable class

7-73

7 Classes

7-74

Customize LookupTable Reporter Output

This example shows how to add fixed content to a customized HTML LookupTable reporter
template. You can also customize your lookup table report output by editing the report generator
program directly. The advantage of customizing a template is that you can reuse it as a basis for
customizing another report generator program.

The template and style sheets for the LookupTable reporter are located in the matlab\toolbox
\shared\slreportgen\rpt\rpt\+slreportgen\+report\@LookupTable\resources
\templates folder. You do not need to specify this path when you copy the default template.

1 Create a copy of the default html template. In this example, the template package is saved as a
zipped file named CustomTemplate.htmtx in the current working folder.

import mlreportgen.report.*
import slreportgen.report.*

LookupTable.createTemplate('CustomTemplate','html');
2 Unzip the template package.

unzipTemplate('CustomTemplate.htmtx');

The unzipped template package is a folder of document, style sheet, and image files. In this
example, the unzipped folder of files is named "CustomTemplate" and is saved in the current
working folder. The root.css file, which is in the stylesheets subfolder, defines the styles that
control the appearance and formatting of the generated report. The docpart_templates.html
file specifies the holes that hold the report contents when the report is generated.

3 From the CustomTemplate folder, open the docpart_templates.html file in a text editor
outside of MATLAB.

<html>
 <head>

 slreportgen.report.LookupTable class

7-75

 <meta charset="utf-8" />
 <title>Document Part Templates</title>
 <link rel="StyleSheet" href="./stylesheets/root.css" type="text/css" />
 </head> <body>
 <dplibrary>

 <!-- NOTE: temporary in the template library until the -->
 <! DOM supports a source without template name -->
 <dptemplate name="LookupTable">
 <hole id="Content">LUT_CONTENT</hole>
 <hole id="LUTDataTypes">DATA_TYPE</hole>
 <hole id="FootNoteContent">LUT_FOOTNOTE_CONTENT</hole>
 </dptemplate>
 <dptemplate name="LookupTableContent">
 <hole id="TableContent">TABLECONTENT</hole>
 <hole id="FigureContent">FIGURECONTENT</hole>
 </dptemplate>
 </dplibrary>
 </body>
</html>

4 To add fixed text to the template, place it in the desired location and use standard HTML tagging.
This example adds text that appears above the data types table in the generated report. Only the
<dptemplate name="LookupTable"> portion of the file is shown.

 <dptemplate name="LookupTable">
 <hole id="Content">LUT_CONTENT</hole>
 <p><scan>This lookup table block contains the following
 data types:</scan></p>
 <hole id="LUTDataTypes">DATA_TYPE</hole>
 <hole id="FootNoteContent">LUT_FOOTNOTE_CONTENT</hole>
 </dptemplate>

5 Save the file.
6 At the MATLAB command line, zip the template folder into a template package. For this example,

the template package is zipped to the CustomTemplate.htmtx file.

zipTemplate('CustomTemplate');
7 To use the saved template for your report, specify the template source in your report generator

program.

lutable = LookupTable();
lutable.TemplateSrc = 'CustomTemplate';

See Also
slreportgen.finder.BlockFinder | slreportgen.finder.BlockResult |
slreportgen.finder.DiagramElementFinder |
slreportgen.finder.DiagramElementResult | mlreportgen.report.BaseTable |
mlreportgen.report.Figure | slreportgen.utils.isLookupTable

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”
“Templates”

7 Classes

7-76

Introduced in R2018a

 slreportgen.report.LookupTable class

7-77

slreportgen.report.MATLABFunction class
Package: slreportgen.report
Superclasses: slreportgen.report.Reporter

MATLAB Function block or Stateflow MATLAB function reporter

Description
Use an object of the slreportgen.report.MATLABFunction class to report on a Simulink
MATLAB Function block or Stateflow MATLAB function.

By default, a MATLABFunction reporter adds this information to a report:

• Simulink MATLAB Function block or Stateflow MATLAB function properties
• A summary of the function input and output arguments
• The MATLAB code used by the function to compute its outputs from its inputs

Use the reporter properties to include other information, such as detailed argument properties,
function symbol properties, and supporting functions.

Note To use a MATLABFunction reporter in a report, you must create the report using the
slreportgen.report.Report class.

The slreportgen.report.MATLABFunction class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
Description

reporter = slreportgen.report.MATLABFunction() creates an empty MATLABFunction
reporter based on the default template. Use the Object property to specify the Simulink MATLAB
Function block or Stateflow MATLAB function to report.

reporter = slreportgen.report.MATLABFunction(mlfcnObj) sets the Object property to
the MATLAB Function block or Stateflow MATLAB function specified by mlfcnObj.

reporter = MATLABFunction(Name,Value) sets MATLABFunction reporter properties on page
7-79 using name-value pairs. You can specify multiple name-value pair arguments in any order.
Enclose each property name in single or double quotes.

7 Classes

7-78

Properties
Object — MATLAB function block or Stateflow MATLAB function
[] (default) | character vector | string scalar | function handle

MATLAB function block or Stateflow MATLAB function to report, specified as one of these values:

Note If you use a finder to find a MATLAB Function block or Stateflow MATLAB function and add the
result directly to a report, an slreportgen.report.MATLABFunction reporter is used instead of a
Simulink object property reporter.

IncludeObjectProperties — Whether to include object properties
true (default) | false

Whether to include object properties, specified as a true or false. If the value is true, the report
includes a table of the properties of the Simulink or Stateflow object that corresponds to the MATLAB
Function block or Stateflow MATLAB function being reported.

ObjectPropertiesReporter — Object properties reporter
mlreportgen.report.BaseTable object

Object properties reporter, specified as an mlreportgen.report.BaseTable object. The
MATLABFunction reporter uses the specified reporter to create a table of the properties of the
Simulink or Stateflow object that corresponds to the MATLAB Function block or Stateflow MATLAB
function being reported.

For a Simulink MATLAB Function block, these properties are reported:

For a Stateflow MATLAB function, these properties are reported:

To customize the appearance of the function property table and its title, customize the default
BaseTable reporter or replace it with a custom version of the BaseTable reporter. To customize the
title of the function property table, specify the contents in the Title property of the default or
replacement reporter. The content you specify is placed at the front of the default title.

IncludeArgumentSummary — Include summary of arguments
true (default) | false

Whether to include an argument summary table, specified as true or false. If the value is true, the
report includes a summary table of the properties of the arguments of the reported function.

ArgumentSummaryProperties — Argument properties to include
{'Name' 'Scope' 'Port' 'Compiled Type' 'Compiled Size'} (default) | cell array of
character vectors | string array

Argument properties to include in the argument summary table, specified as a cell array of character
vectors or a string array. If the model is not already compiled, the MATLABFunction reporter
compiles the model to obtain Compile Type and Compiled Size data. When the report is closed,
the model is uncompiled.

Specify any combination of these properties:

 slreportgen.report.MATLABFunction class

7-79

ArgumentSummaryReporter — Argument summary reporter
mlreportgen.report.BaseTable object

Argument summary reporter, specified as an mlreportgen.report.BaseTable object. The
MATLABFunction reporter uses this reporter to create a table of the arguments of the MATLAB
function. The table includes a summary of the arguments and the argument properties specified by
the ArgumentSummaryProperties property.

To customize the appearance of the argument summary table and the content of its title, customize
the default BaseTable object or replace it with a custom version of the BaseTable object.

IncludeArgumentProperties — Whether to Include details for each argument
false (default) | true

Whether to include a property table with detailed information for each argument, specified as true
or false. If the value is true, the report includes a property table for each argument of the MATLAB
function. If the model is not already compiled, the MATLABFunction reporter compiles the model.
When the report is closed, the model is uncompiled.

ArgumentPropertiesReporter — Argument properties reporter
mlreportgen.report.BaseTable object

Argument properties reporter, specified as an mlreportgen.report.BaseTable object. The
MATLABFunction reporter uses the specified reporter to create a table of the properties of each
argument of the MATLAB function.

To customize the appearance of the argument property table, customize the default BaseTable
reporter or replace it with a custom BaseTable reporter.

IncludeFunctionScript — Whether to Include function script
true (default) | false

Whether to include the script of the MATLAB function, specified as a true or false. If the value is
true, the report includes the code that computes the output of the MATLAB function from its inputs.

FunctionScript — Function code formatter
mlreportgen.dom.Paragraph object

Function code formatter, specified as an mlreportgen.dom.Paragraph object. The Paragraph
object controls the formatting, such as the font family, font size, and alignment, of the code in the
MATLAB function. It does not control whether the reporter highlights code syntax. To control the
highlighting, use the HighlightScriptSyntax property.

To customize the code appearance, modify the properties of the default Paragraph reporter or
replace the reporter with a custom reporter. If you add content to the default or replacement
Paragraph reporter, the content is placed before the MATLAB Function script in the generated
report.

FunctionScriptTitle — Function script section title
mlreportgen.dom.Paragraph object

Function script section title, specified as an mlreportgen.dom.Paragraph object. The Paragraph
object contains the title for the section that contains the MATLAB function code. The default title is
the MATLAB Function block name followed by Function Script. For example, for a MATLAB

7 Classes

7-80

Function block named Covariance Derivative, the title is Covariance Derivative Function
Script. The properties of the paragraph specify the appearance of the title.

To customize the title appearance, modify the properties of the default Paragraph object or replace
it with another paragraph object. If you add content to the default or replacement title paragraph, the
content you specify is placed at the front of the default title.

HighlightScriptSyntax — Whether to highlight script syntax keywords
true (default) | false

Whether to highlight script syntax keywords, specified as true or false. If the value is true, the
report uses color to highlight the function code syntax keywords.

IncludeFunctionSymbolData — Whether to include function symbol data
false (default) | true

Whether to include function symbol data, specified as a true or false.

If the value is true, the report includes information about the symbols that appear in the main
MATLAB function code. If the IncludeSupportingFunctions property is true, the report also
contains information about symbols that appear in the code of the supporting functions. Function
symbol data is reported only if the Object property of specifies a MATLAB Function block.

Note If you include function symbol data, report generation can be slower than if you do not include
it.

FunctionSymbolReporter — Function symbol data reporter
mlreportgen.report.BaseTable object

Function symbol data reporter, specified as an mlreportgen.report.BaseTable object. The
MATLABLFunction reporter uses this reporter to create tables of the properties of each symbol that
appears in the main MATLAB function code and optionally in the supporting functions code. The
symbols in the generated report are grouped by types, which are variable, operation, and function-
call site. The tables for each symbol type appear after the function properties. The reported function
and symbol properties are listed in the following tables.

Function Properties Description
Function Name Name of the function
Function ID ID of the function. Simulink assigns a unique ID

to every MATLAB Function in a model and to
every supporting function. A built-in or user-
defined supporting function uses its same ID,
regardless of how many functions it supports in a
given model.

Path Path of the function, which is the model path of
the MATLAB Function block or Stateflow block
that contains it. The path of a supporting function
is the path of the MATLAB file that defines it.

 slreportgen.report.MATLABFunction class

7-81

Variable Properties Description
Name Name of the variable
Data type Data type and the size of the variable
Start position Line and column number of the first character of

the variable name in the script in which it
appears

Operation Properties Description
Name Character or characters that represent the

operation type. For example, +
Data type Data type and size of the value produced by the

operation
Start position Line and column number of the first character of

the operation in the script in which it appears

Function Call Site Properties Description
Name Name of the called function
Data type Data type and the size of the value returned by

the called function
ID ID of the called function
Start position Line and column number of the first character of

the call site in the script in which it appears

To customize the appearance of the function symbol data tables, customize the default BaseTable
reporter or replace it with a custom BaseTable reporter. If you specify the Title property in the
default or replacement BaseTable reporter, the content is placed at the front of the default title in
the generated report.

IncludeSupportingFunctions — Whether to include supporting functions
false (default) | true

If the value is true, the report includes a list of the user-defined functions called directly or
indirectly by the main function of the MATLAB Function block being reported.

SupportingFunctionsType — Supporting function types
{'MATLAB' 'user-defined'} (default) | cell array of character vectors | string array

Supporting function types to be reported, specified as a cell array of character vectors or a string
array. The cell array or string array can specify one or both of these types.

SupportingFunctionsReporter — Supporting functions reporter
slreportgen.report.BaseTable

Supporting functions reporter, specified as an mlreportgen.report.BaseTable object. The
BaseTable object reports the functions invoked directly or indirectly by the main MATLAB function.
The functions are sorted by function name.

To customize the appearance of the supporting functions table, customize the default BaseTable
reporter or replace it with a customized version of the BaseTable reporter.

7 Classes

7-82

IncludeSupportingFunctionsCode — Whether to include code of user-defined supporting
functions
false (default) | true

Whether to include the code of user-defined supporting functions, specified as true or false. If the
value is true, the report includes the code for the user-defined functions called directly or indirectly
by the main function.

SupportingFunctionsCode — User-defined supporting functions code formatter
mlreportgen.dom.Paragraph object

User-defined supporting functions code formatter, specified as an mlreportgen.dom.Paragraph
object. The Paragraph object controls the formatting, such as the font family, font size, and
alignment, of the code in the report. The MATLABFunction reporter highlights the syntax of the
function text (code) and appends the highlighted text to the paragraph object.

To customize the code appearance, modify the properties of the default Paragraph reporter or
replace the reporter with a custom reporter. If you add content to the default or replacement
Paragraph reporter, the content is placed before the supporting function code in the generated
report.

SupportingFunctionsCodeTitle — User-defined supporting function section title
mlreportgen.dom.Paragraph

User-defined supporting function section title, specified as an mlreportgen.dom.Paragraph
object. The MATLABFunction reporter uses the formatter to create a title for each user-defined
supporting function. The default value of this property is an empty paragraph with properties that
specify the appearance of the function title. By default, the MATLABFunction reporter appends the
supporting function name to the paragraph. You can customize the title appearance by modifying the
properties of the default paragraph object or by replacing it with another paragraph object. Any
content that you add to the default or replacement paragraph appears before each title in the
generated report.

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified in one of these ways:

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

Name of the template for this reporter, specified as a character vector or string scalar. The template
for this reporter must be in the template library of the template source (TemplateSrc) for this
reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID, or an mlreportgen.dom.LinkTarget object. A character vector or string scalar

 slreportgen.report.MATLABFunction class

7-83

value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
slreportgen.report.MATLABFunction.createTemplate Create copy of

slreportgen.report.MATLABFunction
reporter template

slreportgen.report.MATLABFunction.getClassFolder Get location of folder that contains
slreportgen.report.MATLABFunction class
definition file

slreportgen.report.MATLABFunction.customizeReporter Create subclass of
slreportgen.report.MATLABFunction class

copy Create copy of a Simulink reporter object
and make deep copies of certain property
values

getImpl Get implementation of reporter

Examples

Report a MATLAB Function block

To include information about a MATLAB Function block in a report, use an
slreportgen.report.MATLABFunction reporter. By default, the report includes a table of object
properties, a table of input and output arguments, and the function script.

import slreportgen.report.*
import mlreportgen.report.*

model_name = "slrgex_radar_eml";
load_system(model_name);
mlfcnObj = "slrgex_radar_eml/MATLAB Function";

rpt = slreportgen.report.Report("MyReport","pdf");
chapter = Chapter(mlfcnObj);
rptr = MATLABFunction(mlfcnObj);
add(chapter,rptr);
add(rpt,chapter);

close(rpt);
close_system(model_name);
rptview(rpt);

Here is the first page of the report:

7 Classes

7-84

Include MATLAB Function Argument Details in Report

To include the MATLAB function argument details in a report, use the
IncludeArgumentProperties property of the MATLABFunction reporter.

import slreportgen.report.*
import mlreportgen.report.*

 slreportgen.report.MATLABFunction class

7-85

model_name = "slrgex_radar_eml";
load_system(model_name);
mlfcnObj = "slrgex_radar_eml/MATLAB Function";

rpt = slreportgen.report.Report("myReport","pdf");
chapter = Chapter(mlfcnObj);
rptr = MATLABFunction(mlfcnObj);
rptr.IncludeArgumentProperties = true;

add(chapter,rptr);
add(rpt,chapter);

close(rpt);
close_system(model_name);
rptview(rpt);

Here are some of the argument detail tables in the generated report:

7 Classes

7-86

Change the MATLAB Function Script Formatting and Title

To customize the title of the function script section, use the FunctionScriptTitle property. To
change the formatting of the code, create a DOM paragraph that specifies the font family, size, and
color and assign the paragraph to the FunctionScript property.

import slreportgen.report.*
import mlreportgen.report.*

model_name = "slrgex_radar_eml";
load_system(model_name);
mlfcnObj = "slrgex_radar_eml/MATLAB Function";

rpt = slreportgen.report.Report("myReport","html");
chapter = Chapter(mlfcnObj);
rptr = MATLABFunction(mlfcnObj);

paraTitle = mlreportgen.dom.Paragraph("SCRIPT: ");
rptr.FunctionScriptTitle = paraTitle;

paraScript = mlreportgen.dom.Paragraph;
paraScript.FontFamilyName = "Arial";
paraScript.FontSize = "12pt";
paraScript.Color = "blue";
rptr.FunctionScript = paraScript;

add(chapter,rptr);
add(rpt,chapter);

close(rpt);
close_system(model_name);
rptview(rpt);

Here is a portion of the function script section, which shows the title and some of the code:

 slreportgen.report.MATLABFunction class

7-87

Include Code of User-Defined Supporting Functions in Report

By default, a MATLABFunction reporter includes the code of the main function, but not the code of
the user-defined supporting functions that the main function calls. To include the code of the user-
defined functions, use the IncludeSupportingFunctionsCode property.

import slreportgen.report.*
import mlreportgen.report.*

model_name = "slrgex_stats";
load_system(model_name);
mlfcnObj = "slrgex_stats/MATLAB Function";
rpt = slreportgen.report.Report("myReport","pdf");
chapter = Chapter(mlfcnObj);
rptr = MATLABFunction(mlfcnObj);
rptr.IncludeSupportingFunctionsCode = true;
add(chapter,rptr);
add(rpt,chapter);
close(rpt);
close_system(model_name);
rptview(rpt);

Here is the MATLAB function script section, which shows the code for both the main function and the
user-defined supporting function, avg.

7 Classes

7-88

See Also
slreportgen.finder.BlockFinder | slreportgen.finder.BlockResult |
slreportgen.finder.DiagramElementFinder |
slreportgen.finder.DiagramElementResult |
slreportgen.finder.StateflowDiagramElementFinder | mlreportgen.report.BaseTable
| mlreportgen.dom.Paragraph | MATLAB Function | slreportgen.utils.isMATLABFunction

Topics
“Report on MATLAB Function” on page 4-13
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2018a

 slreportgen.report.MATLABFunction class

7-89

slreportgen.report.ModelConfiguration class
Package: slreportgen.report
Superclasses: slreportgen.report.Reporter

Model configuration set reporter

Description
Use an object of the slreportgen.report.ModelConfiguration class to report on the active
configuration set of a model.

Note To use an slreportgen.report.ModelConfiguration reporter in a report, you must
create the report using the slreportgen.report.Report class or subclass.

The slreportgen.report.ModelConfiguration class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
Description

reporter = slreportgen.report.ModelConfiguration() creates an empty
ModelConfiguration reporter object based on the default template. You must specify a model for
which to report the active configuration set by setting the Model property. Use other properties to
specify report options.

reporter = slreportgen.report.ModelConfiguration(model) creates a
ModelConfiguration reporter object and sets the Model property to the specified model.

reporter = slreportgen.report.ModelConfiguration(Name,Value) sets the reporter
properties using name-value pairs. You can specify multiple name-value pair arguments in any order.
Enclose each property name in single or double quotes.

Properties
Model — Name or handle of model
[] (default) | string scalar | character vector | handle

Name or handle of open or loaded Simulink model, specified as a string scalar, character vector, or
handle.

7 Classes

7-90

Title — Configuration set title
[] (default) | character vector | string scalar | mlreportgen.dom.Text object |
mlreportgen.dom.InternalLink object | mlreportgen.dom.ExternalLink object

Configuration set title, specified as a character vector, string scalar, mlreportgen.dom.Text object,
mlreportgen.dom.InternalLink object, or mlreportgen.dom.ExternalLink object.

If the FormatPolicy property is set to "Inline Text" and the Title property is set to:

In both cases, to format the title, use the TextFormatter property of this ModelConfiguration
reporter.

If you do not specify a title, the title is the model name followed by Configuration Set. For
example:

slrgex_sf_car Configuration Set

FormatPolicy — Format for reporting configuration set
"Auto" (default) | "Table" | "Paragraph" | "Inline Text"

Format for reporting the configuration set, specified as one of these strings or character vectors:

TableReporter — Table formatter
mlreportgen.report.BaseTable object

Table formatter for the tables that the ModelConfiguration reporter generates, specified as an
mlreportgen.report.BaseTable object. The default value of this property is a BaseTable object
with the TableStyleName property set to the ModelConfigurationTable style, which is defined
in the default template for a ModelConfiguration reporter. To customize the appearance of the
table, modify the properties of the default BaseTable object or replace the object with your own
BaseTable object. If you add content to the Title property, the content appears in front of the table
title in the generated report.

ParagraphFormatter — Paragraph formatter
mlreportgen.dom.Paragraph object

Paragraph formatter for any model configuration content that is generated as a paragraph, specified
as an mlreportgen.dom.Paragraph object. The default value of this property is a Paragraph
object with the StyleName property set to the ModelConfigurationParagraph style, which is
defined in the default template for a ModelConfiguration reporter. To customize the appearance of
the paragraph, modify the properties of the default Paragraph object or replace the object with your
own Paragraph object. If you add content to the paragraph object, the content appears in front of
the model configuration content in the generated report.

TextFormatter — Text formatter
mlreportgen.dom.Text object

Text formatter for any model configuration content that is generated as inline text, specified as an
mlreportgen.dom.Text object. By default, the value of this property is an empty Text object. To
customize the appearance of the text, modify the properties of the default mlreportgen.dom.Text
object or replace the object with a customized mlreportgen.dom.Text object. If you add content to
the Text object, the content appears in front of the model configuration content in the generated
report.

 slreportgen.report.ModelConfiguration class

7-91

MaxCols — Maximum number of columns in value tables
32 (default) | positive integer

Maximum number of table columns in value tables, specified as a positive integer. If a property value
is reported using a table and the number of columns is greater than the value of the MaxCols
property, the table is sliced vertically. Slicing divides the table into multiple tables.

DepthLimit — Maximum number of nested levels to report
10 (default) | nonnegative integer

Maximum number of nested levels in the structured object hierarchy to report, specified as a
nonnegative integer. The top level of the hierarchy is the configuration set object
(Simulink.ConfigSet). Levels less than or equal to the value of DepthLimit are flattened into a
sequence of interlinked tables. Levels greater than the depth limit are not reported. If you set the
DepthLimit property to 0, hierarchically structured types are not expanded.

ObjectLimit — Maximum number of nested objects to report
200 (default) | positive integer

Maximum number of objects in an object hierarchy to report, specified as a positive integer.

IncludeTitle — Whether to include the configuration set title
true (default) | false

Whether to include the configuration set title, specified as true or false.

When IncludeTitle is true, the configuration set title (the content of the Title property) is
included in the:

The configuration set title is always included in the title for the paragraph or table that contains the
configuration set components, regardless of the value of the IncludeTitle property.

ShowDataType — Whether a title includes data type
false (default) | true

Whether a title includes the data type of the value that the title describes, specified as true or
false.
Data Types: logical

ShowEmptyValues — Whether to show configuration properties that have empty values
true (default) | false

Whether to show configuration set or component properties that have empty values, specified as a
true or false.
Data Types: logical

ShowDefaultValues — Whether to show configuration properties that use default values
true (default) | false

Whether to show configuration set or component properties that use the default values, specified as
true or false.
Data Types: logical

7 Classes

7-92

PropertyFilterFcn — Function or expression to filter configuration properties from a
report
[] (default) | function handle | string scalar | character vector

Function or expression to filter configuration set and component object properties from a report,
specified as a function handle, string scalar, or character vector. Specify a function as a function
handle. Specify an expression as a string scalar or character vector. If PropertyFilterFcn is
empty, all properties are included in the report.

If you provide a function handle, the associated function must:

For example, this code uses the PropertyFilterFcn property to prevent the display of the Name
and Description properties:

import slreportgen.report.*

rpt = slreportgen.report.Report("MyReport","pdf");
open(rpt);

model = "slrgex_sf_car";
load_system(model);
reporter = ModelConfiguration(model);

filterFcnHandle = @(variableName,variableObject,propertyName) ...
 (propertyName == "Name") || ...
 (propertyName == "Description");

reporter.PropertyFilterFcn = filterFcnHandle;
append(rpt,reporter);
close(rpt);
rptview(rpt);

If you provide a string scalar or a character vector, it must contain an expression. The expression:

For example, this code uses the PropertyFilterFcn property to prevent the display of the Name
and Description properties:

import slreportgen.report.*

rpt = slreportgen.report.Report("MyReport","pdf");
open(rpt);

model = "slrgex_sf_car";
load_system(model);
reporter = ModelConfiguration(model);

filterStr = "isFiltered = " +...
 "strcmp(propertyName,'Name')||strcmp(propertyName,'Description');";
reporter.PropertyFilterFcn = filterStr;

append(rpt,reporter);
close(rpt);
rptview(rpt);

NumericFormat — Format or precision used to display noninteger numeric values
[] (default) | string scalar | character vector | positive integer

 slreportgen.report.ModelConfiguration class

7-93

Format or precision used to display noninteger numeric values, specified as a string scalar, character
vector, or positive integer.

Specify the format as a string scalar or a character vector. See the formatSpec argument on the
sprintf reference page.

Specify the precision as a positive integer. See the precision argument on the num2str reference
page.
Example: "%.2f" displays double values with two digits to the right of the decimal place.
Example: 2 displays a maximum number of two significant digits.

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified in one of these ways:

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

Name of the template for this reporter, specified as a character vector or string scalar. The template
for this reporter must be in the template library of the template source (TemplateSrc) for this
reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID, or an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
slreportgen.report.ModelConfiguration.createTemplate Create model configuration reporter

template
slreportgen.report.ModelConfiguration.customizeReporter Create custom model configuration

reporter class
slreportgen.report.ModelConfiguration.getClassFolder Get location of model configuration

reporter class definition file
copy Create copy of a Simulink reporter

object and make deep copies of certain
property values

getConfigSet Get active configuration set from model
configuration reporter

getImpl Get implementation of reporter

7 Classes

7-94

Examples

Report Active Model Configuration Set

Use an object of the slreportgen.report.ModelConfiguration class to report on the active
model configuration set.

Import the MATLAB Report and Simulink Report API packages so that you do not have to use long,
fully qualified class names.

import mlreportgen.report.*
import slreportgen.report.*

Create a Simulink report.

rpt = slreportgen.report.Report("MyReport","pdf");
open(rpt);

Create a chapter for the active model configuration set.

chapter = Chapter();
chapter.Title = "Active Model Configuration Set";

Load a model.

model = "slrgex_sf_car";
load_system(model);

Create an slreportgen.report.ModelConfiguration object to report on the active
configuration set of the model.

reporter = ModelConfiguration(model);

Append the reporter to the chapter and chapter to the report.

append(chapter,reporter);
append(rpt,chapter);

Close and view the report

close(rpt);
rptview(rpt);

See Also
Simulink.ConfigSet

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”
“Manage Configuration Sets for a Model”

Introduced in R2020b

 slreportgen.report.ModelConfiguration class

7-95

slreportgen.report.ModelVariable class
Package: slreportgen.report
Superclasses: slreportgen.report.Reporter

Model variable reporter

Description
Reporter for a Simulink model variable.

Note To use an slreportgen.report.ModelVariable reporter in a report, you must create the
report using the slreportgen.report.Report class or subclass.

The slreportgen.report.ModelVariable class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
Description

You do not create an slreportgen.report.ModelVariable object explicitly. To get the
slreportgen.report.ModelVariable object for a found model variable:

• Use the find or next method of the slreportgen.finder.ModelVariableFinder object to
get the slreportgen.finder.ModelVariableResult object for the found variable.

• Call the getReporter method of the slreportgen.finder.ModelVariableResult object to
get the slreportgen.report.ModelVariable object.

You can customize the reporting of a model variable by setting the properties of the
slreportgen.report.ModelVariable object.

Properties
Variable — Simulink.VariableUsage object
Simulink.VariableUsage

The Simulink.VariableUsage object that corresponds to the variable to report on. The object
contains the name of the variable, the source of the variable, and the blocks that use the variable.
This property is read-only.

ModelBlockPath — Path of Model block that sets the value of variable
[] | character vector

7 Classes

7-96

Path of the Model block that sets the variable value, specified as a character vector.

Suppose that a referenced model uses a model argument to set a block parameter value. If a model
has multiple instances of the referenced model, the model variable finder returns multiple instances
of the variable that is associated with the model argument. The ModelBlockPath property uniquely
identifies the instance of the variable by providing the path to the model block that set its value. If a
variable is not associated with a model argument in a referenced model, the ModelBockPath is
empty. For more information about referenced models and instance-specific parameters, see
“Parameterize Instances of a Reusable Referenced Model”.

ShowUsedBy — Whether to include blocks that use this variable
true (default) | false

Whether to include a list of blocks that use this variable, specified as true or false. If the
FormatPolicy property has a value of "Inline Text", the list of blocks is not included in the
report, regardless of the value of the ShowUsedBy property.

If the report includes reported content for a block in the Used By list, clicking the hyperlink for the
block takes you to the content. See “Generate Report of Model Variables, Diagrams, and Blocks” on
page 7-102.

ShowWorkspaceInfo — Whether to include workspace
true (default) | false

Whether to include the workspace that the variable is resolved in, specified as true or false. If the
FormatPolicy property has a value of "Inline Text", the workspace is not included in the report,
regardless of the value of the ShowWorkspaceInfo property.

ListFormatter — List formatter
mlreportgen.dom.UnorderedList (default) | mlreportgen.dom.OrderedList

List formatter that formats the list of blocks that use the variable, specified as an
mlreportgen.dom.UnorderedList object or an mlreportgen.dom.OrderedList object. To
customize how the list is formatted, modify the list object properties or replace the list object with a
customized list object that does not contain list items.

FormatPolicy — Format of variable values
"Auto" (default) | "Table" | "Paragraph" | "Inline Text"

Format of the variable values, specified as one of these strings or character vectors:

TableReporter — Table reporter
mlreportgen.report.Basetable

Table reporter used to format the value of the variable, specified as an
mlreportgen.report.BaseTable object. To customize the appearance of the table, modify the
properties of the default table reporter or replace it with a customized table reporter. If you add
content to the Title property of the default or customized table reporter, the content appears in
front of the table title in the generated report.

ParagraphFormatter — Paragraph formatter
mlreportgen.dom.Paragraph object

Paragraph formatter to format the value of a model variable, specified as an
mlreportgen.dom.Paragraph object. To customize the appearance of the paragraph, modify the

 slreportgen.report.ModelVariable class

7-97

properties of the mlreportgen.dom.Paragraph object or replace the object with a customized
mlreportgen.dom.Paragraph object. If you add content to the default or replacement paragraph
object, the content appears in front of the variable content in the generated report.

TextFormatter — Text formatter
mlreportgen.dom.Text object

Text formatter to format the name and value of the model variable when the text is in line with the
surrounding text, specified as an mlreportgen.dom.Text object. To customize the appearance of
the text, modify the properties of the default mlreportgen.dom.Text object or replace the object
with a customized mlreportgen.dom.Text object. If you add content to the default or replacement
text object, the content appears in front of the variable content in the generated report.

MaxCols — Maximum number of table columns to display
32 (default) | positive integer

Maximum number of table columns to display, specified as a positive integer. For array variables
reported using a table, if the number of columns is greater than the value of the MaxCols property,
the table is sliced vertically. Slicing divides the table into multiple tables.

DepthLimit — Maximum number of nested levels to report
10 (default) | nonnegative integer

Maximum number of levels to report for a variable that is a structured object or an array of
structured objects, specified as a nonnegative integer. Levels less than or equal to the value of
DepthLimit are flattened into a sequence of interlinked tables (see the FormatPolicy property).
Levels greater than the depth limit are not reported. If you set the DepthLimit property to 0,
structured objects are not expanded.

ObjectLimit — Maximum number of nested objects to report
200 (default) | positive integer

Maximum number of objects in an object hierarchy to report, specified as a positive integer.

IncludeTitle — Whether to include title
true (default) | false

Whether to include a title, specified as true or false. The title contains the variable name and
optionally, the data type. If IncludeTitle is true, the title is included. By default, the title includes
only the name of the variable. To include the data type of the variable, set the ShowDataType
property to true.

Title — Title of variable to report
[] (default) | character vector | string scalar | mlreportgen.dom.Text object |
mlreportgen.dom.InternalLink object | mlreportgen.dom.ExternalLink object

Title of variable to report, specified as a character vector, string scalar, mlreportgen.dom.Text
object, mlreportgen.dom.InternalLink object, or mlreportgen.dom.ExternalLink object.

If the FormatPolicy property is set to "Inline Text" and the Title property is set to:

In both cases, to format the title, use the TextFormatter property of this ModelVariable reporter.

If you do not specify the Title property, the title is the variable name.

7 Classes

7-98

ShowDataType — Whether to show data type of variable in title
false (default) | true

Whether to show the data type of the variable in the title, specified as true or false.

ShowEmptyValues — Whether to show properties that have empty values
true (default) | false

Whether to show properties that have empty values, specified as a true or false. The
ShowEmptyValues property applies only to MATLAB object, Simulink object, and Stateflow object
variables.

ShowDefaultValues — Whether to show properties that use default values
true (default) | 0

Whether to show properties that use the default value, specified as true or false. The
ShowDefaultValues property applies only to MATLAB object, Simulink object, and Stateflow object
variables.

PropertyFilterFcn — Function or expression to filter properties of a reported model
variable
[] (default) | function handle | string scalar | character vector

Function or expression to filter the properties of a reported model variable from a report. Specify a
function as a function handle. Specify an expression as a string scalar or character vector. This
property applies only to a variable that contains an object. If you do not provide
PropertyFilterFcn, all properties of the model variable are included in the report.

If you provide a function handle, the associated function must:

For example, this code prevents the display of the Description and Complexity properties of a
Simulink.Parameter object.
import slreportgen.finder.*
import slreportgen.report.*

rpt = slreportgen.report.Report('modelvarrpt','pdf');

model_name = load_system('sldemo_mdlref_datamngt');

finder = slreportgen.finder.ModelVariableFinder(model_name);

while hasNext(finder)
 result = next(finder);
 varRptr = getReporter(result);
 varRptr.PropertyFilterFcn = @varPropertyFilter;
 add(rpt,varRptr);
end

close(rpt);

close_system(model_name);
rptview(rpt);

function tf = varPropertyFilter(~, variableObject,propertyName)
if isa(variableObject, 'Simulink.Parameter')
 tf = (propertyName == "Description") || ...
 (propertyName == "Complexity");
else
 tf = false;

 slreportgen.report.ModelVariable class

7-99

end
end

If you provide a string scalar or a character vector, it must contain an expression. The expression:

For example, this code filters the CoderInfo property of a Simulink.Parameter object from the
report.

import slreportgen.finder.*
import slreportgen.report.*

rpt = slreportgen.report.Report('modelvarrpt','pdf');

model_name = load_system('sldemo_mdlref_datamngt');

finder = slreportgen.finder.ModelVariableFinder(model_name);

while hasNext(finder)
 result = next(finder);
 varRptr = getReporter(result);

 varRptr.PropertyFilterFcn = "isFiltered = " + ...
 "isa(variableObject, 'Simulink.Parameter') && " + ...
 "propertyName == 'CoderInfo';";
 add(rpt,varRptr);
end

close(rpt);

close_system(model_name);
rptview(rpt);

NumericFormat — Format or precision used to display noninteger numeric values
"%.2f" (default) | string scalar | character vector | positive integer

Format or precision used to display noninteger numeric values.

Specify the format as a string scalar or a character vector. See the formatSpec argument on the
sprintf reference page.

Specify the precision as a positive integer. See the precision argument on the num2str reference
page.
Example: "%.2f" displays double values with two digits to the right of the decimal place.
Example: 2 displays a maximum number of two significant digits.

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified in one of these ways:

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

7 Classes

7-100

TemplateName — Name of template for this reporter
character vector | string scalar

Name of the template for this reporter, specified as a character vector or string scalar. The template
for this reporter must be in the template library of the template source (TemplateSrc) for this
reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID, or an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
getVariableName Get name of variable from model variable

reporter
getVariableValue Get value of variable from model variable

reporter
slreportgen.report.ModelVariable.createTemplate Create model variable reporter template
slreportgen.report.ModelVariable.customizeReporter Create custom model variable reporter class
slreportgen.report.ModelVariable.getClassFolder Get location of model variable reporter class

definition file
copy Create copy of a Simulink reporter object and

make deep copies of certain property values
getImpl Get implementation of reporter

Examples

Customize the Formatting of Model Variables in a Report

Use the properties of an slreportgen.report.ModelVariable object to customize the formatting
of a variable.

% Create a Report
rpt = slreportgen.report.Report("MyReport","pdf");

% Create a Chapter
chapter = mlreportgen.report.Chapter();
chapter.Title = "Model Variable Reporter Example";

% Load the model
model_name = "slrgex_sf_car";
load_system(model_name);

% Find the variables in the model
finder = slreportgen.finder.ModelVariableFinder(model_name);

while hasNext(finder)
 result = next(finder);

 slreportgen.report.ModelVariable class

7-101

 % Get the ModelVariable reporter for the result
 % Customize the formatting of numbers
 reporter = getReporter(result);
 reporter.NumericFormat = "%.4f";

 % Add the reporter to the chapter
 add(chapter,reporter);
end
% Add chapter to the report
add(rpt,chapter);

% Close the report and open the viewer
close(rpt);
rptview(rpt);

Generate Report of Model Variables, Diagrams, and Blocks

Generate a report that includes:

• A chapter for the model variables
• A chapter for each model diagram, with a section for the blocks in the diagram

Each block name in the Used By list for a model variable is a hyperlink to the corresponding content
reported for the block.

% Create a Report
rpt = slreportgen.report.Report("MyReport","pdf");

% Load the model
model_name = "slrgex_sf_car";
load_system(model_name);

% Create a Chapter for the Variables
chapter = mlreportgen.report.Chapter();
chapter.Title = sprintf("Model Variable Report for the %s model",model_name);

% Find the variables in the model
finder = slreportgen.finder.ModelVariableFinder(model_name);

% Report on the variables
while hasNext(finder)
 result = next(finder);
 reporter = getReporter(result);
 add(chapter,reporter);
end
add(rpt,chapter);

% Add diagrams to the report
finder = slreportgen.finder.DiagramFinder(model_name);
while hasNext(finder)
 result = next(finder);
 ch = mlreportgen.report.Chapter(result.Name);
 add(ch, result);
 % Add a section for the blocks in the diagram
 sect = mlreportgen.report.Section("Title","Blocks");

7 Classes

7-102

 blFinder = slreportgen.finder.BlockFinder(result.Object);
 while hasNext(blFinder)
 blockresult = next(blFinder);
 add(sect,blockresult);
 end
 add(ch,sect);
 add(rpt, ch);
end

% Close and view the report
close(rpt);
rptview(rpt);

See Also
slreportgen.report.BusObject | Simulink.VariableUsage |
slreportgen.finder.ModelVariableResult | slreportgen.finder.ModelVariableFinder

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2019b

 slreportgen.report.ModelVariable class

7-103

slreportgen.report.Notes class
Package: slreportgen.report slreportgen.report slreportgen.report
slreportgen.report
Superclasses: slreportgen.report.Reporter

Simulink or Stateflow diagram notes reporter

Description
Create a reporter that reports on Simulink or Stateflow diagram notes.

Note To use a Notes reporter in a report, you must create the report using the
slreportgen.report.Report class.

The slreportgen.report.Notes class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
Description

notes = slreportgen.report.Notes() creates an empty slreportgen.report.Notes
reporter.

notes = slreportgen.report.Notes(source) creates an slreportgen.report.Notes
reporter for the system specified by source and sets the Source property to source.

slreportgen.report.Notes(Name,Value) sets the reporter properties using name-value pairs.
You can specify multiple name-value pair arguments in any order. Enclose each property name in
single or double quotes.

Properties
Source — Source from which to extract notes
[] (default) | string scalar | character vector | handle | slreportgen.finder.DiagramResult
object

Source from which to extract notes, specified as a string scalar, character vector, handle, or
slreportgen.finder.DiagramResult object. The source can be a model, subsystem, Stateflow
chart, Stateflow truth table, or Stateflow state transition table.

NoteType — Type of notes
'None' (default) | 'Internal' | 'External | 'Inherit'

7 Classes

7-104

Type of notes, specified as one of the values in this table:

Value Description
'Internal' Note content is included with the model and is

saved in a .mldatx file.
'External' Note content is external to the model and is

specified by a URL.
'Inherited' Note content originates from the ancestors of the

specified diagram source.
'None' The diagram does not have notes.

This property is read-only.

ReportOnInheritNoteType — Whether to report on notes with type inherit
false (default) | true

Whether to report on notes that have a NoteType of 'Inherit', specified as true or false. The
reported note content is based on the parent note type as described in this table.

Parent Note Type Reported Note Content
'Internal' Link to parent note content
'External' Link to external content specified by the parent

note
'None' Empty content

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified in one of these ways:

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

Name of the template for this reporter, specified as a character vector or string scalar. The template
for this reporter must be in the template library of the template source (TemplateSrc) for this
reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID, or an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

 slreportgen.report.Notes class

7-105

Methods
Public Methods

exportToHTML htmlContent = exportToHTML(notes)
exports the internal notes associated with the
specified slreportgen.report.Notes reporter
to a string of HTML. If the NoteType of the note
reporter is not 'Internal', the exportToHTML
method ends with an error.

exportToHTMLFile fullFileName =
exportToHTMLFile(notes,filename)
exports the internal notes associated with the
specified slreportgen.report.Notes reporter
to the specified HTML file. If the NoteType of
the note reporter is not 'Internal' or if the
HTML file name exists, the exportToHTMLFile
method ends with an error.

getURL getURL(notes) returns the URL of the external
notes associated with the specified
slreportgen.report.Notes reporter as a
string. If the NoteType of the note reporter is
not 'External', the getURL method ends with
an error.

slreportgen.report.Notes.createTemplat
e

Copy the default slreportgen.report.Notes
reporter template.

slreportgen.report.Notes.customizeRepo
rter

Subclass the slreportgen.report.Notes
class for customization.

copy Create copy of a Simulink reporter object and
make deep copies of certain property values

slreportgen.report.Notes.getClassFolde
r

Get the location of the folder that contains the
slreportgen.report.Notes reporter class
definition file.

getImpl Get implementation of reporter

Examples

Include Model Notes in a Report

This example reports the notes for the slreportgendemo_autotrans model. This example reports
the notes for the overall model. For an example that reports the diagram and notes for each
subsystem of the model, see “Report Model Notes” on page 4-39.

The example creates a chapter for the notes and includes the model notes in the chapter by adding an
slreportgen.report.Notes reporter to the chapter.

model = "slreportgendemo_autotrans";
open_system(model);

7 Classes

7-106

import mlreportgen.report.*
import slreportgen.report.*

rpt = slreportgen.report.Report(model + "_Notes_Report","pdf");
open(rpt);

ch = Chapter("Title", model + " Notes");
notes = Notes(model);
add(ch,notes);
add(rpt,ch);

close(rpt);
rptview(rpt);

See Also
slreportgen.finder.DiagramResult | slreportgen.finder.SystemDiagramFinder |
slreportgen.finder.ChartDiagramFinder

Topics
“Report Model Notes” on page 4-39
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2020a

 slreportgen.report.Notes class

7-107

slreportgen.report.Report class
Package: slreportgen.report

Report container

Description
slreportgen.report.Report is a container for a report based on Simulink reporters and DOM
objects. Use this object to generate an HTML, PDF, or Word report based on templates in a template
library.

Note Use objects of this type, instead of mlreportgen.report.Report, to create Simulink
reports, which are reports that use Simulink reporters to generate content. You can also use MATLAB
reporters and DOM objects to generate Simulink report content.

Construction
report = slreportgen.report.Report() returns a report object report with the default report
type (PDF) and a default file name (untitled.pdf).

report = slreportgen.report.Report(path) uses the specified output path for the report.

report = slreportgen.report.Report(path,type) creates the specified type of report.

report = slreportgen.report.Report(path,type,template) uses the specified template.

report = slreportgen.report.Report(Name,Value) sets properties using name-value pairs.
You can specify multiple name-value pair arguments in any order. Enclose each property name in
single quotes.

Input Arguments

path — Report output path
untitled.pdf (default) | string | character array

See the OutputPath property.

type — Report output type
'pdf' (default) | 'html' | 'html-file' | 'docx'

See the Type property.

template — Report template
string | character array

See the TemplatePath property.

7 Classes

7-108

Properties
OutputPath — Report document output path
string | character array

Report document output path, specified as a string or character array. The path is the location in the
file system where the report output document is stored. The path can be a full path or a path relative
to the current MATLAB folder, for example, 'C:/myreports/reportA.docx' or 'reportA'. If the
file name does not have a file extension corresponding to the Type property, the appropriate file
extension is added.

Note Generating a PDF report on a cloud drive, such as MATLAB Drive™, can result in an error that
is caused by file contention between the report generation software and the cloud drive
synchronization software. To avoid this error, generate reports on a local drive that does not
synchronize with the cloud. Consider writing a script that generates a report on a local drive and
then copies the report to the cloud drive.

Type — Output type
string | character vector | 'docx' | 'pdf'

Output type, specified as one of these values.

• 'HTML' — HTML report packaged as a zipped file containing the HTML file, images, style sheet,
and JavaScript files of the report.

• 'HTML-FILE' — HTML report as a single HTML file containing the text, style sheet, JavaScript,
and base64-encoded images of the report

• 'PDF' — PDF file
• 'DOCX' — Microsoft Word document

If you specify a template using the TemplatePath property, the value for Type must match the
template type.

Layout — Page layout options
mlreportgen.report.ReportLayout object

Page layout options for this report, specified as a report layout object. See
mlreportgen.report.ReportLayout.

Locale — Locale or language
[] (default) | string | character array

Locale or language, specified as the ISO 639-1 two-letter language code of the locale for which this
report is to be generated. The default [] specifies the language of the system locale, for example,
English on an English system. The Report API uses the language code to translate chapter title
prefixes to the language of the specified locale. Translations are provided for the following locales:
af, ca, cs, da, de, el, en, es, et, eu, fi, fr, hu, id, it, ja, ko, nl, nn, no, pl, pt, ro, ru, sk, sl,
sr, sv, tr, uk, xh, and zh. If you specify an unsupported locale, the English version is used. See ISO
639-1 codes.

TemplatePath — Location of template
string | character array

 slreportgen.report.Report class

7-109

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

Location of template used to format the report, specified as a string or character array. Use this
property to specify a custom template for this report.

Document — Underlying DOM document object
DOM document object

This read-only property is an mlreportgen.dom.Document that is used to generate the content of
the report.

Context — Container for keys and values
map object

This read-only property is a containers.Map object that contains information for generating the
report, such as the hierarchical level of the current report section.

Debug — Debug mode
false (default) | true

Debug mode, specified as a logical. If you set Debug to true, the temporary files for the report are
stored in a subfolder of the report folder. In debug mode, these files are not deleted when the report
is closed.

CompileModelBeforeReporting — Compile Simulink model
true (default) | false

Whether to compile the Simulink model before reporting, specified as a logical. If this property is
true and the model is not already compiled, it compiles when you add a reporter that reports on that
model to this report. If the model cannot be compiled, report generation terminates. If this property
is false, report generation proceeds without compiling the model.

Methods
This class uses the same methods as the MATLAB version. Instead of using mlreportgen in the class
name, use slreportgen. See mlreportgen.report.Report for a list of methods.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Compatibility Considerations
add method is not recommended

Starting in R2020b, use the append method instead of the add method to add content to objects of
these Report API classes:

• slreportgen.report.Report
• mlreportgen.report.Chapter
• mlreportgen.report.Section

To add content to a DOM API object, such as an mlreportgen.dom.Paragraph object, continue to
use the append method of the DOM object. The advantage of using append to add content to Report
API objects is that you use the same method name as you use to add content to DOM API objects.

7 Classes

7-110

There are no plans to remove the add methods of the Report, Chapter, or Section classes. Report
API programs that use the add methods will continue to run.

To update existing code, replace the method name add with append as shown by the examples in the
table.

Not Recommended Recommended
import mlreportgen.report.*
import mlreportgen.dom.*

rpt = slreportgen.report.Report("myrpt","pdf");
ch = Chapter("My Chapter");
sect = Section("My Section");
para = Paragraph("My Content ");
append(para,"more Content");
add(sect,para);
add(ch,sect);
add(rpt,ch);

close(rpt);
rptview(rpt);

import mlreportgen.report.*
import mlreportgen.dom.*

rpt = slreportgen.report.Report("myrpt","pdf");
ch = Chapter("My Chapter");
sect = Section("My Section");
para = Paragraph("My Content ");
append(para,"more Content");
append(sect,para);
append(ch,sect);
append(rpt,ch);

close(rpt);
rptview(rpt);

See Also
slreportgen.finder.DiagramFinder | slreportgen.finder.DiagramElementFinder |
slreportgen.finder.SystemDiagramFinder | slreportgen.finder.ChartDiagramFinder |
slreportgen.finder.StateflowDiagramElementFinder |
slreportgen.finder.StateFinder | slreportgen.report.StateflowObjectProperties |
slreportgen.report.SimulinkObjectProperties | slreportgen.report.Diagram |
slreportgen.finder.BlockFinder | slreportgen.finder.AnnotationFinder

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2017b

 slreportgen.report.Report class

7-111

slreportgen.report.Reporter class
Package: slreportgen.report

Superclass for Simulink reporters

Description
The slreportgen.report.Reporter class is a superclass for the Simulink Report API reporters
and custom reporters that you create to report on Simulink models and model elements. The format
of a reporter is based on a template.

Note To use a subclass of slreportgen.report.Reporter in a report, you must create the report
using the slreportgen.report.Report class or subclass.

The slreportgen.report.Reporter class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
Description

reporter = slreportgen.report.Reporter() creates an empty Simulink reporter.

report = slreportgen.report.Reporter(Name,Value) sets properties using name-value
pairs. You can specify multiple name-value pair arguments in any order. Enclose each property name
in single or double quotes.

Properties
TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified in one of these ways:

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

7 Classes

7-112

Attributes:

GetAccess public
SetAccess public

TemplateName — Name of template for this reporter
character vector | string scalar

Name of the template for this reporter, specified as a character vector or string scalar. The template
for this reporter must be in the template library of the template specified by the TemplateSrc
property of this reporter.

Attributes:

GetAccess public
SetAccess public

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID, or an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Attributes:

GetAccess public
SetAccess public

Methods
Public Methods
copy Create copy of a Simulink reporter object and make

deep copies of certain property values
getImpl Get implementation of reporter
slreportgen.report.Reporter.createTemplate Create reporter template
slreportgen.report.Reporter.customizeReporter Create class derived from

slreportgen.report.Reporter class
slreportgen.report.Reporter.getClassFolder Get location of folder containing

slreportgen.report.Reporter class definition file

See Also
slreportgen.report.Report

Topics
“What Is a Reporter?”
“Report Generation for Simulink and Stateflow Elements” on page 1-9

Introduced in R2021a

 slreportgen.report.Reporter class

7-113

slreportgen.report.RptFile class
Package: slreportgen.report
Superclasses: slreportgen.report.Reporter

Create Report Explorer-based reporter

Description
Use the RptFile reporter to include the content generated by a Report Explorer setup (.rpt) file in
a Report API report. When added to a report, the RptFile reporter:

1 Executes the specified Report Explorer setup file to generate a DocBook XML rendition of the
Report Explorer report

2 Uses a modified version of the Report Explorer Docbook-to-DOM conversion template to convert
the XML to a set of DOM objects (see “Manage Report Conversion Templates”)

3 Adds the DOM content to the Report API report.

Note Use a Block Loop rather than a Chart Loop component in your report setup file to report on
Stateflow charts. See “Report on Stateflow Dialog Snapshots” on page 7-119.

The slreportgen.report.RptFile class is a handle class.

Creation
Description

reporter = RptFile() creates an empty Report Explorer-based RptFile reporter. Before adding
the reporter to a report, your report program must set the reporter's SetupFile property to the path
of a Report Explorer setup (.rpt) file. Otherwise, an error occurs.

By default, the RptFile reporter uses a conversion template that is a slightly modified version of the
Report Explorer's default conversion template for the report output type. For example, if the report
output type is PDF, the reporter uses a slightly modified version of the default template for the Report
Explorer's PDF (from template) output type.

You can use a custom conversion template to customize the reporter output. Use the reporter's
createTemplate method to create a copy of one of the reporter's default output-type-specific
conversion templates for customization. To use the customized template, set the RptFile reporter's
TemplateSrc property to the path of the customized template.

reporter = RptFile(SetupFile) creates a RptFile reporter based on the specified Report
Explorer setup file (.rpt file). See the SetupFile property.

reporter = RptFile(Name,Value) sets properties using name-value pairs. You can specify
multiple name-value pair arguments in any order. Enclose each property name in single quotes.

7 Classes

7-114

Properties
SetupFile — Report Explorer setup file path
character array | string

Report Explorer setup file path, specified as a character array or string. Do not use form-based
reports for setup files that you use with the RptFile reporter. The Report API report to which the
setup file is added overrides the output type of the setup file.

Attributes:

GetAccess public
SetAccess public

Data Types: string | character array

Model — Model name
character array | string

Model name, specified as a character array or string, of the model for which the specified SetupFile
is executed. If the setup file contains a Model Loop, the RptFile reporter sets its value to the value
of this property. An error occurs if the setup file does not contain a Model Loop or contains multiple
model loops.

Attributes:

GetAccess public
SetAccess public

Data Types: character array | string

System — System path
character array | string | slreportgen.finder.DiagramResult object

System path, specified as a character array, string, or slreportgen.finder.DiagramResult
object. If the setup file contains a System Loop, the RptFile reporter sets the System Loop's value to
the value of this property if it is a character or string. If the value is a DiagramResult object, the
reporter sets the System Loop to the value of the result's Path property. An error occurs if the setup
file does not contain a System Loop or contains multiple system loops.

Attributes:

GetAccess public
SetAccess public

Data Types: character array | string | object

Block — Block path
character array | string | slreportgen.finder.DiagramElementResult object |
slreportgen.finder.BlockResult object

Block path, specified as a character array or string,
slreportgen.finder.DiagramElementResult object, or slreportgen.finder.BlockResult
object for a block. If the setup file contains a Block Loop, the RptFile reporter sets the Block Loop's
value to the value of this property if it is a character or string. If the value is an
slreportgen.finder.BlockResult object, the reporter uses the value of the object's BlockPath

 slreportgen.report.RptFile class

7-115

property. If the value is a DiagramElementResult object, the reporter uses the value of the object's
DiagramPath and Name properties to determine the full path. An error occurs if the setup file does
not contain a Block Loop or contains multiple block loops.

Note Use a Block Loop component in your setup file to report on Stateflow charts. See “Report on
Stateflow Dialog Snapshots” on page 7-119.

Attributes:

GetAccess public
SetAccess public

Data Types: character array | string | object

TemplateSrc — Source of conversion template
[] | string | character array

Source of conversion template to be used by this reporter to convert the setup file's XML output to
DOM objects. An empty value specifies use of the default template for the output type of the report to
be generated. A string or character array value specifies the path of a customized version of the
default template for the output type to be generated.

Attributes:

GetAccess public
SetAccess public

Data Types: character array | string

TemplateName — Name of template for this reporter
character array | string

Name of template for this reporter, specified as a character array or string. By default this property
specifies RptFile, the name of the reporter's default template. This default template resides in the
template library of its default conversion template along with other templates used to convert Report
Explorer XML components to DOM objects. The default reporter template contains a single hole
named Content to be filled with the DOM content converted from the XML content generated by the
setup. If you change the name of this template, you must set this property to the new name. You can
modify the template itself, but the modified template must contain a hole named Content.

Attributes:

GetAccess public
SetAccess public

Data Types: character array | string

LinkTarget — Hyperlink target for content created by this reporter
string | character array | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a string or character array that specifies the link target
ID, or an mlreportgen.dom.LinkTarget object. A string or character array value is converted to a
LinkTarget object. The link target object immediately precedes the content of this reporter in the
output report.

7 Classes

7-116

Attributes:

GetAccess public
SetAccess public

Data Types: string | character array | object

Methods
Public Methods
slreportgen.report.RptFile.createTemplate Create Report Explorer-based (RptFile) reporter

template
slreportgen.report.RptFile.customizeReporter Create custom Report Explorer-based reporter class
slreportgen.report.RptFile.getClassFolder Report Explorer-based reporter class definition file

location
copy Create copy of a Simulink reporter object and make

deep copies of certain property values
getImpl Get implementation of reporter

Examples

Create a RptFile Reporter

Create an RptFile reporter without specifying a setup file. Then, use the SetupFile property to
specify the Report Explorer setup file.

reporter = slreportgen.report.RptFile();
reporter.SetupFile = "my_setup_file.rpt"

Report on a Documentation Block

Use the RptFile reporter to report on a Documentation block in the slrgex_fuelsys Simulink
model.

The RptFile reporter uses a Report Explorer setup file to obtain information about the
Documentation block.

Note Before you run this example, use the Report Explorer to create a setup file named
my_setup_file.rpt. The setup file for this example contains a hierarchy of a Model Loop, System
Loop, Block Loop, Paragraph, and Documentation components as shown. Select the components from
the middle pane.

• Model Loop, System Loop, and Block Loop components are in the Simulink folder.
• Paragraph component is in the Formatting folder.
• Documentation block component is in the Simulink Blocks folder.

For more information on setting up a setup file for this example, see “Create a Report Setup File”.

 slreportgen.report.RptFile class

7-117

Use this script to generate a report that includes information about the properties of the Sensor Info
Documentation block in the ToController system of the slrgex_fuelsys model.

model = "slrgex_fuelsys";
load_system(model)

rpt = slreportgen.report.Report("MyReport","pdf");
chap = mlreportgen.report.Chapter("Report on a DocBlock");

rptFile = slreportgen.report.RptFile("my_setup_file.rpt");
rptFile.Model = model;
rptFile.System = "sldemo_fuelsys/To Controller";
rptFile.Block = "sldemo_fuelsys/To Controller/Sensor Info";

add(chap,rptFile);
add(rpt,chap);

close(rpt);
rptview(rpt);

7 Classes

7-118

Report on Stateflow Dialog Snapshots

To use slreportgen.report.RptFile to report on Stateflow dialog snapshots, use a Block Loop in
the Report Explorer setup file.

Use the Report Explorer to create a setup file named my_setup_file.rpt. The setup file for this
example contains a hierarchy consisting of a Model Loop, System Loop, Block Loop, and Stateflow
Dialog Snapshot component. Select the components from the middle pane.

• The Model Loop, System Loop, and Block Loop components are in the Simulink folder.
• The Stateflow Dialog Snapshot component is in the Stateflow folder.

For more information on setting up a setup file, see “Create a Report Setup File”.

 slreportgen.report.RptFile class

7-119

Create a Simulink report.

rpt = slreportgen.report.Report("MyReport","pdf");
open(rpt);

Load a model.

model = "slrgex_sf_car";
load_system(model);

Create a chapter.

chap = mlreportgen.report.Chapter();
chap.Title = strcat(model,": Stateflow Dialog Snapshots");

Find all the systems in the model.

sys_finder = slreportgen.finder.SystemDiagramFinder(model);
systems = find(sys_finder);

Find all the blocks in the current system. Use the report setup file to report on Stateflow dialog
snapshots.

for system = systems
 blk_finder = slreportgen.finder.BlockFinder(system);
 blocks = find(blk_finder);

 for block = blocks
 if slreportgen.utils.isValidSlSystem(block.Object) && ...
 ~isempty(slreportgen.utils.block2chart(block.Object))
 rptFile = slreportgen.report.RptFile("my_setup_file.rpt");
 rptFile.Model = model;

7 Classes

7-120

 rptFile.System = system;
 rptFile.Block = block;
 add(chap,rptFile);
 end
 end
end

Add the chapter to the report.

add(rpt,chap);

Close and view the report.

close(rpt);
rptview(rpt);

See Also
mlreportgen.report.RptFile | slreportgen.report.Report

Topics
“Use Simulink Report Explorer Components in a Report API Report” on page 4-20
“Working with the Report Explorer”

Introduced in R2019a

 slreportgen.report.RptFile class

7-121

slreportgen.report.Signal class
Package: slreportgen.report

Signal reporter

Description
Use an object of the slreportgen.report.Signal class to report the properties of a signal.

Signals are the outputs of dynamic systems that are represented by blocks in a Simulink diagram and
by the diagram itself. See “Signal Basics”.

Note To use a Signal object in a report, you must create the report using the
slreportgen.report.Report class or subclass.

The slreportgen.report.Signal class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
Description

reporter = slreportgen.report.Signal() creates an slreportgen.report.Signal object
with default property values. You must specify the signal to report by setting the Object property.
Use other properties to customize the information reported and the formatting of the information.

reporter = slreportgen.report.Signal(object) sets the Object property to object.

reporter = slreportgen.report.Signal(Name,Value) sets the Signal object properties on
page 7-122 using name-value pairs. You can specify multiple name-value pair arguments in any order.
Enclose each property name in single or double quotes.

Properties
Object — Block output port representing signal to report
[] (default) | handle

Block output port that represents the signal to report, specified as a handle. The signal reporter
reports information about the properties of the output port and the properties of the line connected
to the port.

7 Classes

7-122

ShowSimulinkSignalObject — Whether to report information about the Simulink.Signal
object for this signal
true (default) | false

Whether to report information about the Simulink.Signal object for this signal, specified as true
or false. If this property is true, the signal reporter includes information about the
Simulink.Signal object that specifies the attributes of the signal. The properties of the
Simulink.Signal object are reported using an mlreportgen.report.MATLABVariable reporter.
Use the MATLABVariableReporter property of this signal reporter to customize the appearance of
the signal object information. If the signal is not associated with a signal object, nothing is reported.

MATLABVariableReporter — Reporter for Simulink.Signal object
mlreportgen.report.MATLABVariable object

Reporter for the Simulink.Signal object that defines the signal being reported, specified as an
mlreportgen.report.MATLABVariable object. The default value is an empty MATLABVariable
reporter with the DepthLimit property set to 0. The default reporter reports information about the
Simulink.Signal object in a single table. To customize the appearance of the reported information,
modify the properties of the default MATLABVariable reporter or replace the reporter with a
customized MATLABVariable reporter. For example, the following code uses the
PropertyFilterFcn property of the MATLABVariable reporter to display only specific properties
of the Simulink.Signal object:

filterFcnHandle = @(variableName, variableObject, propertyName) ...
~ismember(propertyName, ["Description", "DataType", "Unit"]);
signalRptr.MATLABVariableReporter.PropertyFilterFcn = filterFcnHandle;

Some properties of signal objects, such as the CoderInfo property, have values that are also objects
with properties. To display the properties of properties in separate tables, set the DepthLimit
property of the MATLABVariableReporter to an integer that is greater than 0. For example:

signalRptr.MATLABVariableReporter.DepthLimit = 10;

PropertyTable — Signal properties table formatter
mlreportgen.report.BaseTable

Signal properties table formatter, specified as an mlreportgen.report.BaseTable object. The
default value of this property is a BaseTable object with the TableStyleName property set to the
SignalTable style, which is defined in the default template for a Signal reporter. To customize the
appearance of the table, modify the properties of the default BaseTable object or replace the object
with your own BaseTable object. If you add content to the Title property of the BaseTable object,
the content appears in front of the table title in the generated report.

ShowEmptyValues — Whether to show signal properties with empty values
false (default) | true

Whether to show signal properties that have empty values, specified as true or false.

Properties — Signal properties to report
["Name" "Description" "Source" "NonvirtualDestination" "DataType"] (default) |
string array | cell array

Signal properties to report, specified as a string array or a cell array of character vectors. Specify any
combination of these properties:

 slreportgen.report.Signal class

7-123

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified in one of these ways:

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
"Signal" (default) | character vector | string scalar

Name of the template for this reporter, specified as a character vector or string scalar. The template
for this reporter must be in the template library specified by the TemplateSrc property for this
reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID, or an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
slreportgen.report.Signal.createTemplate Create signal reporter template
slreportgen.report.Signal.customizeReporter Create subclass of slreportgen.report.Signal class
slreportgen.report.Signal.getClassFolder Get location of folder that contains

slreportgen.report.Signal class definition file
copy Create copy of a Simulink reporter object and make

deep copies of certain property values
getImpl Get implementation of reporter

Examples

Report a Signal

Use an slreportgen.report.Signal object to include information about a signal in a report.

Import the MATLAB and Simulink Report API packages so that you do not have to use long, fully
qualified class names.

import mlreportgen.report.*
import slreportgen.report.*

Load a model.

model_name = "slrgex_vdp";
load_system(model_name);

7 Classes

7-124

Create a Simulink report.

rpt = slreportgen.report.Report("signal_example","pdf");

Add a diagram of the model to the report.

append(rpt,slreportgen.report.Diagram(model_name));

Get the port handle for the signal that you want to report.

ph = get_param("slrgex_vdp/x1","PortHandles");
port = ph.Outport;

Create a chapter for the signal information.

ch = Chapter("x1");

Create a Signal reporter for the signal and append the reporter to the chapter.

signalRptr = slreportgen.report.Signal(port);
append(ch,signalRptr);

Add the chapter to the report. Close and view the report.

append(rpt,ch);
close(rpt);
rptview(rpt);

See Also
slreportgen.finder.SignalFinder | slreportgen.finder.SignalResult

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”
“Signal Basics”

Introduced in R2021a

 slreportgen.report.Signal class

7-125

slreportgen.report.SimulinkObjectProperties class
Package: slreportgen.report

Simulink object properties reporter

Description
The SimulinkObjectProperties reporter generates tables that list the properties and property
values of Simulink objects.

Note To use a Simulink object properties reporter in a report, you must create the report using the
slreportgen.report.Report class.

Construction
reporter = SimulinkObjectProperties() creates an empty Simulink object properties
reporter. Use the Object property to specify the object to report.

To specify the list of Simulink object properties to include in the generated properties table, use the
Properties property of the reporter. If you do not specify any properties, the reporter includes a
default set of properties based on the object type. For example, the property table for a block
includes the properties set by its parameter dialog box.

To customize the format of the generated property table, use the PropertyTable property.

Note This reporter compiles the model containing the object to be reported if the model is not
already compiled. Compiling the model is necessary to propagate values to properties that are
unspecified when the model has not been compiled. The model is uncompiled when you close the
report that contains the generated property table.

reporter = SimulinkObjectProperties(obj) creates a reporter that generates a table listing
the property values of the specified Simulink object.

reporter = SimulinkObjectProperties(Name,Value) sets properties using name-value pairs.
You can specify multiple name-value pair arguments in any order. Enclose each property name in
single quotes.

Input Arguments

obj — Simulink object
path string or character vector | object handle

See Object property.

7 Classes

7-126

Properties
Object — Simulink object to report
path string or character vector | object handle

Simulink object whose properties to report, specified as a path to or handle of the specified object.
The Object value must be one of these types of objects:

• model
• block
• annotation
• port
• line
• line segment

PropertyTable — Object properties table reporter
mlreportgen.report.BaseTable reporter

Object properties table reporter, specified as an mlreportgen.report.BaseTable reporter. The
object properties reporter uses the base table reporter to format object properties. If this property is
initially empty, the object properties reporter sets the property to a default property table reporter. To
customize the property table formatting, set this property to a base table reporter that meets your
formatting requirements.

ShowPromptNames — Whether to show property prompt names
true (default) | false

Choice to display property names as dialog box prompts, specified as a logical. If true and the
property appears on the dialog box of the object, the table lists its dialog box prompt instead of its
property name. Otherwise, the generated property table lists the property using its property name.

ShowEmptyValues — Whether to show properties with empty values
false (default) | true

Choice to show properties with empty values.

Whether to show properties with empty values, specified as a logical. If false, the generated object
properties table omits object properties whose value is empty. If true, the table includes properties
whose value is empty.

Properties — Names of properties to be reported
cell array of strings or character vectors

Names of object properties to be reported, specified as a cell array.

A cell array of names of object properties to be reported, specified as a cell array of strings or
character vectors. If you do not specify any properties, the reporter determines a set of properties to
report.

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified in one of these ways:

 slreportgen.report.SimulinkObjectProperties class

7-127

• Character vector or string scalar that specifies the path of the file that contains the template for
this reporter

• Reporter or report whose template is used for this reporter or whose template library contains the
template for this reporter

• DOM document or document part whose template is used for this reporter or whose template
library contains the template for this reporter

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

Name of the template for this reporter, specified as a character vector or string scalar. The template
for this reporter must be in the template library of the template source (TemplateSrc) for this
reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID, or an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
createTemplate Create Simulink object properties reporter template
customizeReporter Create custom Simulink object properties class
getClassFolder Simulink object properties class definition file location

Inherited Methods

copy Create copy of a Simulink reporter object and
make deep copies of certain property values

getImpl Get implementation of reporter

Examples
Add Properties Table to Report

Use the SimulinkObjectProperties reporter to add a properties table for the slrgex_vdp model
to the report.

import slreportgen.report.*
import mlreportgen.report.*
model_name = "slrgex_vdp";
load_system(model_name);

7 Classes

7-128

rpt = slreportgen.report.Report("output","pdf");
chapter = Chapter(model_name);
rptr = SimulinkObjectProperties(model_name);

add(chapter, rptr);
add(rpt, chapter);
close(rpt);
close_system(model_name);
rptview(rpt);

Specify Object Properties for Report Table

Add a properties table to a report and include properties for a model line segment only.

import slreportgen.report.*
import mlreportgen.report.*
model_name = "slrgex_vdp";
rpt = slreportgen.report.Report("output","pdf");
chapter = Chapter(model_name);

load_system(model_name);
ph = get_param("slrgex_vdp/Mu","PortHandles");
outPort = ph.Outport;
line = get_param(outPort,"Line");
rptr = SimulinkObjectProperties(line);
rptr.Properties = {"Parent","SourcePort","StorageClass"};

add(chapter,rptr);
add(rpt,chapter);
close(rpt);
close_system(model_name);
rptview(rpt);

See Also
slreportgen.report.Report | mlreportgen.report.BaseTable

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2017b

 slreportgen.report.SimulinkObjectProperties class

7-129

slreportgen.report.StateflowObjectProperties
class
Package: slreportgen.report

Stateflow object properties reporter

Description
The StateflowObjectProperties reporter generates tables that list the properties and property
values of Stateflow objects.

Note To use a Stateflow object properties reporter in a report, you must create the report using the
slreportgen.report.Report class.

Construction
reporter = StateflowObjectProperties() creates an empty Stateflow object properties
reporter. Use the properties of this reporter to specify reporting on these Stateflow objects:

• Object whose properties to report
• Properties to report
• Format of the reported properties

reporter = StateflowObjectProperties(obj) creates a reporter that generates a table listing
the property values of the specified Stateflow object. The properties included by default depend on
the object type. For example, a chart table includes the state and data of the chart. To specify a
custom list of properties to be included in the generated property table, use the Properties
property. Use the PropertyTable property to customize the format of the generated property table.

Note This reporter compiles the model containing the object to be reported if the model is not
already compiled. Compiling the model is necessary to propagate values to properties that are
unspecified when the model has not been compiled. The model is in an uncompiled state when you
close the report that contains the generated property table.

reporter = StateflowObjectProperties(Name,Value) sets properties using name-value
pairs. You can specify multiple name-value pair arguments in any order. Enclose each property name
in single quotes.

Input Arguments

obj — Stateflow object
Stateflow object handle

See Object property.

7 Classes

7-130

Properties
Object — Stateflow object to report
Stateflow object handle

Stateflow object whose properties to report, specified as the path string or character vector or as the
handle of the specified object.

PropertyTable — Object properties table reporter
mlreportgen.report.BaseTable reporter

Object properties table reporter, specified as an mlreportgen.report.BaseTable reporter. The
object properties reporter uses the base table reporter to format object properties. If this property is
initially empty, the object properties reporter sets the property to a default property table reporter. To
customize the property table formatting, set this property to a base table reporter that meets your
formatting requirements.

ShowEmptyValues — Whether to show properties with empty values
false (default) | true

Choice to show properties with empty values.

Whether to show properties with empty values, specified as a logical. If false, the generated object
properties table omits object properties whose value is empty. If true, the table includes properties
whose value is empty.

Properties — Names of properties to be reported
cell array of character vectors | cell array of strings

Names of object properties to be reported, specified as a cell array of strings or character vectors.

A cell array of names of object properties to be reported, specified as a cell array of strings or
character vectors. If you do not specify any properties, the reporter determines a set of properties to
report.

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified in one of these ways:

• Character vector or string scalar that specifies the path of the file that contains the template for
this reporter

• Reporter or report whose template is used for this reporter or whose template library contains the
template for this reporter

• DOM document or document part whose template is used for this reporter or whose template
library contains the template for this reporter

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

 slreportgen.report.StateflowObjectProperties class

7-131

Name of the template for this reporter, specified as a character vector or string scalar. The template
for this reporter must be in the template library of the template source (TemplateSrc) for this
reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID, or an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods

createTemplate Create Stateflow object properties reporter template
customizeReporter Create custom Stateflow object properties class
getClassFolder Stateflow object properties class definition file location

Inherited Methods

copy Create copy of a Simulink reporter object and
make deep copies of certain property values

getImpl Get implementation of reporter

Examples
Add Stateflow Chart Properties Table to Report

Add a table that reports the properties of the shift_model chart in slrgex_sf_car model.

import slreportgen.report.*
import mlreportgen.report.*
import slreportgen.utils.*

model_name = 'slrgex_sf_car';
load_system(model_name);

rpt = slreportgen.report.Report('output','pdf');
chapter = Chapter(model_name);
chart = block2chart('slrgex_sf_car/shift_logic');
rptr = StateflowObjectProperties(chart);

add(chapter, rptr);
add(rpt, chapter);
close(rpt);
close_system(model_name);
rptview(rpt);

See Also
slreportgen.report.Report | mlreportgen.report.BaseTable

7 Classes

7-132

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2017b

 slreportgen.report.StateflowObjectProperties class

7-133

slreportgen.report.SystemHierarchy class
Package: slreportgen.report
Superclasses: slreportgen.report.Reporter

System hierarchy reporter

Description
Creates a system hierarchy reporter that generates a nested list of the subsystems of a Simulink
model or subsystem in a report.

Note To use a system hierarchy reporter in a report, you must create the report using the
slreportgen.report.Report class or subclass.

The slreportgen.report.SystemHierarchy class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
Description

rptr = slreportgen.report.SystemHierarchy() creates an empty system hierarchy reporter
based on a default template. Customize the content and format of the generated list by using the
reporter properties. Before you add the reporter to a report, you must specify a model or subsystem
in the Source property of the reporter. Adding an empty reporter to a report produces an error.

rptr = slreportgen.report.SystemHierarchy(source) creates a system hierarchy reporter
for the model or subsystem specified by source. See the Source property.

rptr = slreportgen.report.SystemHierarchy(Name,Value) sets the reporter properties
using name-value pairs. You can specify multiple name-value pair arguments in any order. Enclose
each property name in single or double quotes.

Properties
Source — Simulink model or subsystem
[] (default) | string scalar | character vector | handle

Simulink model or subsystem, specified as a string scalar or character vector that contains the path
to the model or subsystem, or as a handle to the model or subsystem.

MaxAncestorLevel — Maximum number of levels of ancestors to include
Inf (default) | nonnegative integer scalar

7 Classes

7-134

Maximum number of levels of ancestors of the source subsystem to include in the generated list,
specified as a nonnegative integer scalar. For example, if MaxAncestorLevel is 2, the list includes
the source and up to two levels of ancestors. If MaxAncestorLevel is Inf, the default value, the list
includes all ancestors. If MaxAncestorLevel is zero, the list does not include ancestors.

MaxDescendantLevel — Maximum number of levels of descendants to include
Inf (default) | nonnegative integer scalar

Maximum number of levels of descendants of the source model or subsystem to include in the
generated list, specified as a nonnegative integer scalar. For example, if MaxDescendantLevel is 2,
the list includes the source and up to two levels of descendants. If MaxDescendantLevel is Inf, the
default value, the list includes all descendants. If MaxDescendantLevel is zero, the list does not
include descendants.

IncludePeers — Whether to include peers of the subsystem
true (default) | false

Whether to include peers of the source subsystem in the generated list, specified as true or false.

EmphasizeSource — Whether to emphasize the source
true (default) | false

Whether to emphasize the source model or subsystem in the generated list, specified as true or
false. If EmphasizeSource is true, the name of the source model or subsystem is formatted
according to the TextFormatter property. Otherwise, it is formatted like the other items in the list.

ListFormatter — List formatter
mlreportgen.dom.UnorderedList (default) | mlreportgen.dom.OrderedList

List formatter that formats the generated list, specified as an mlreportgen.dom.UnorderedList
object or an mlreportgen.dom.OrderedList object. To customize the list formatting, modify the
list object properties or replace the list object with a customized list object that does not contain list
items.

SourceTextFormatter — Text formatter for highlighting the name of the source
mlreportgen.dom.Text

Text formatter object that formats the name of the source model or subsystem in the generated list,
specified as an mlreportgen.dom.Text object. This property applies only if the EmphasizeSource
property is true. The initial value of the SourceTextFormatter property is an
mlreportgen.dom.Text object with the Bold and Italic properties set to true. To customize the
appearance of the name in the generated list, modify the mlreportgen.dom.Text object properties
or replace the object with a customized mlreportgen.dom.Text object. If you add text to the
default or replacement text object, the text appears in front of the source name in the generated
report.

IncludeMaskedSubsystems — Whether to include masked subsystems
false (default) | true

Whether the generated list of descendants of the source system includes masked subsystems,
specified as true or false. If IncludeMaskedSubsystems is true, the list includes masked
subsystems and their descendant subsystems, as long as the number of levels below the source
subsystem is less than or equal to the value of the MaxDescendantLevel property.

 slreportgen.report.SystemHierarchy class

7-135

To enable the system hierarchy reporter to link masked subsystems to the corresponding diagrams in
the report, in the diagram reporter, set the MaskedSystemLinkPolicy property to 'system'.

IncludeReferencedModels — Whether to include referenced models
true (default) | false

Whether the generated list of descendants of the source system includes referenced models, specified
as true or false. If IncludeReferencedModels is true, the list includes referenced models and
their descendant subsystems, as long as the number of levels below the source subsystem is less than
or equal to the value of the MaxDescendantLevel property.

IncludeSimulinkLibraryLinks — Whether to include Simulink library links
true (default) | false

Whether the generated list of descendants of the source system includes subsystems that link to a
Simulink library subsystem, specified as true or false. The list includes a linked subsystem or one
of its descendant subsystems, only if all of these conditions are true:

IncludeUserLibraryLinks — Whether to include library links to user-defined libraries
true (default) | false

Whether the generated list of descendants of the source system includes subsystems that link to a
user-defined library subsystem, specified as true or false. The list includes a linked subsystem, or
one of its descendant subsystems, only if all of these conditions are true:

IncludeVariants — Variants to include
"Active" (default) | "All" | "ActivePlusCode"

Variants of a variant block to include in the generated list of descendants of the source system,
specified as one of the values in the table. You can specify the value as a string scalar or a character
vector.

Value Description
"Active" Active variants (default)
"All" All variants
"ActivePlusCode" Active variants and code variants

The list includes the variants only if the number of levels below the source subsystem is less than or
equal to the value of the MaxDescendantLevel property.

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified in one of these ways:

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

7 Classes

7-136

TemplateName — Name of template for this reporter
character vector | string scalar

Name of the template for this reporter, specified as a character vector or string scalar. The template
for this reporter must be in the template library of the template source (TemplateSrc) for this
reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID, or an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
slreportgen.report.SystemHierarchy.createTemplate Create system hierarchy reporter template
slreportgen.report.SystemHierarchy.customizeReporter Create custom system hierarchy reporter

class
slreportgen.report.SystemHierarchy.getClassFolder Get location of system hierarchy reporter

class definition file
copy Create copy of a Simulink reporter object

and make deep copies of certain property
values

getImpl Get implementation of reporter

Examples

Include System Hierarchy of a Model in a Report

Include the system hierarchy of the slrgex_fuelsys model in a report by adding an
slreportgen.report.SystemHierarchy reporter to a report generation program. Generate the
model diagrams by adding an slreportgen.finder.DiagramFinder object. The system hierarchy
reporter generates links from subsystems in the nested list to the corresponding diagrams.

% Import the API packages
import slreportgen.report.*
import mlreportgen.report.*
import mlreportgen.dom.*

% Load the model
model = "slrgex_fuelsys";
load_system(model);

% Create a report
rpt = slreportgen.report.Report("output","pdf");

% Create a chapter reporter
chapter = Chapter("System Hierarchy for the " + model + " Model");

% Create a SystemHierarchy reporter for the model

 slreportgen.report.SystemHierarchy class

7-137

rptr = SystemHierarchy(model);

% Add the SystemHierarchy reporter to the chapter.
% Add the chapter to the report
add(chapter, rptr);
add(rpt, chapter);

% Find the diagrams for the subsystems
finder = slreportgen.finder.DiagramFinder(model);
while hasNext(finder)
 result = next(finder);
 ch = Chapter(result.Name);
 add(ch, result);
 add(rpt, ch);
end

% Close and view the output report
close(rpt);
close_system(model);
rptview(rpt);

Here is the system hierarchy in the generated report:

7 Classes

7-138

To see the diagram corresponding to a subsystem, click the subsystem in the list.

See Also
slreportgen.finder.DiagramFinder

Topics
“Report Systems Hierarchically” on page 4-25
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2019b

 slreportgen.report.SystemHierarchy class

7-139

slreportgen.report.SystemIO class
Package: slreportgen.report
Superclasses: slreportgen.report.Reporter

Simulink system input and output signal reporter

Description
Create a reporter that reports on signals entering or leaving a Simulink model or subsystem.

Note To use a SystemIO reporter in a report, you must create the report using the
slreportgen.report.Report class.

The slreportgen.report.SystemIO class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
Description

slreportgen.report.SystemIO() creates an empty slreportgen.report.SystemIO reporter
object. Use the Object property to specify the model or subsystem to be reported. By default, the
reporter generates summary tables for the system inputs and outputs. The input summary table lists
the sources of the input signals. The output summary table lists the destinations of the output signals.
The reporter also generates a signal details section that lists the properties of the input and output
ports. Use the reporter properties to customize the content and appearance of the generated report.
For example, use the DetailsReporter property to customize the content and appearance of the
signal details section.

slreportgen.report.SystemIO(object) creates a reporter for the model or subsystem specified
by object. See the Object property.

slreportgen.report.SystemIO(Name,Value) sets the reporter properties using name-value
pairs. You can specify multiple name-value pair arguments in any order. Enclose each property name
in single or double quotes.

Properties
Object — Model or subsystem to be reported
string scalar | character vector | handle | slreportgen.finder.DiagramResult object |
slreportgen.finder.BlockResult object

7 Classes

7-140

Simulink model or subsystem to be reported, specified as a string scalar or character vector that
contains the path to the model or subsystem, as a handle to the model or subsystem, as an
slreportgen.finder.DiagramResult object, or as an slreportgen.finder.BlockResult
object.
Attributes:

GetAccess public
SetAccess public

InputSummaryProperties — List of properties to report for each input
string array | cell array of character vectors

List of properties to report for each input, specified as a string array or a cell array of character
vectors. By default, the list includes Port, Inport Block, Source, Name, and DataType. The value
reported for Inport Block is the name of the Inport block that corresponds to the input signal in
the system. You can include these signal properties in the list:

You also can specify these block properties of the corresponding Inport block:

Attributes:

GetAccess public
SetAccess public

OutputSummaryProperties — List of properties to report for each output
string array | cell array of character vectors

List of properties to report for each output, specified as a string array or a cell array of character
vectors. By default, the list includes Port, Outport Block, Destination, Name, and DataType.
The value reported for Outport Block is the name of the Outport block that corresponds to the
output signal in the system. You can include these signal properties in the list:

You also can specify these block properties of the corresponding Outport block:

Attributes:

GetAccess public
SetAccess public

ShowInputSummary — Whether to show input summary table
true (default) | false

Whether to show a table that summarizes the inputs to the subsystem or model, specified as true or
false. The InputSummaryProperties property determines which input properties the table
includes.
Attributes:

GetAccess public
SetAccess public

ShowOutputSummary — Whether to show output summary table
true (default) | false

 slreportgen.report.SystemIO class

7-141

Whether to show a table that summarizes the outputs from the subsystem or model, specified as true
or false. The OutputSummaryProperties property determines which output properties the table
includes.
Attributes:

GetAccess public
SetAccess public

ShowDetails — Whether to show details for each input and output
true (default) | false

Whether to show details for each input or output, specified as true or false. If ShowDetails is
true, the reporter inserts slreportgen.report.SimulinkObjectProperties reporters after
the input and output summary tables. If Object is a model, details about the input or output blocks
are included. If Object is a subsystem, details about the input or output ports are included. The port
numbers in the summary tables link to the corresponding SimulinkObjectProperties reporter for
that port.
Attributes:

GetAccess public
SetAccess public

ShowEmptyColumns — Whether to show empty columns in summary tables
false (default) | true

Whether to show empty columns in summary tables, specified as true or false. If
ShowEmptyColumns is true, the summary tables include columns that do not have data.
Attributes:

GetAccess public
SetAccess public

InputSummaryReporter — Table formatter for input summary tables
mlreportgen.report.BaseTable object

Table formatter for input summary tables, specified as an mlreportgen.report.BaseTable
reporter. The default value is a BaseTable reporter. To customize the appearance of the table,
modify the properties of the default table reporter or replace it with a customized table reporter. If
you add content to the Title property of the default or customized table reporter, the content
appears in front of the table title in the generated report.
Attributes:

GetAccess public
SetAccess public

OutputSummaryReporter — Table formatter for output summary tables
mlreportgen.report.BaseTable object

Table formatter for output summary tables, specified as an mlreportgen.report.BaseTable
reporter. The default value is a BaseTable reporter. To customize the appearance of the table,
modify the properties of the default table reporter or replace it with a customized table reporter. If
you add content to the Title property of the default or customized table reporter, the content
appears in front of the table title in the generated report.

7 Classes

7-142

Attributes:

GetAccess public
SetAccess public

DetailsReporter — Formatter for detail tables
slreportgen.report.SimulinkObjectProperties object

Formatter for detail tables, specified as an slreportgen.report.SimulinkObjectProperties
reporter. The default value is an SimulinkObjectProperties reporter. To customize the
appearance of the detail tables, modify the properties of the default SimulinkObjectProperties
reporter or replace it with a customized SimulinkObjectProperties reporter.

Attributes:

GetAccess public
SetAccess public

ListFormatter — List formatter for source and destination lists
mlreportgen.dom.UnorderedList object | mlreportgen.dom.OrderedList object

List formatter for the source and destination lists, specified as an
mlreportgen.dom.UnorderedList or mlreportgen.dom.OrderedList object. The source list is
the list of blocks to which an input signal is connected. The destination list is the list of blocks to
which an output signal is connected. The default formatter is an UnorderedList object. To
customize the appearance of the list, modify the properties of the default list formatter or replace it
with a customized list object that does not contain any children.

Attributes:

GetAccess public
SetAccess public

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified in one of these ways:

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

Attributes:

GetAccess public
SetAccess public

TemplateName — Name of template for this reporter
character vector | string scalar

Name of the template for this reporter, specified as a character vector or string scalar. The template
for this reporter must be in the template library of the template specified by the TemplateSrc
property of this reporter.

 slreportgen.report.SystemIO class

7-143

Attributes:

GetAccess public
SetAccess public

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID, or an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.
Attributes:

GetAccess public
SetAccess public

Methods
Public Methods
slreportgen.report.SystemIO.createTemplate Copy the default slreportgen.report.SystemIO

reporter template
slreportgen.report.SystemIO.customizeReporter Create subclass of slreportgen.report.SystemIO

class
slreportgen.report.SystemIO.getClassFolder Get location of folder that contains the

slreportgen.report.SystemIO class definition file
copy Create copy of a Simulink reporter object and

make deep copies of certain property values
getImpl Get implementation of reporter

Examples

Report on Inputs and Outputs of a Model

This example uses an slreportgen.report.SystemIO reporter to report on the inputs and outputs
of a model and its subsystems.

model_name = "slrgex_f14";
load_system(model_name);
% Create a Simulink report
rpt = slreportgen.report.Report("SystemIO_example","docx");

% Create finder to find all diagrams in model
finder = slreportgen.finder.DiagramFinder(model_name);

% Report inputs and outputs of each diagram
ch = mlreportgen.report.Chapter("Diagrams");
while hasNext(finder)
 result = next(finder);
 if strcmpi(result.Type,"Simulink.SubSystem") ...
 || strcmpi(result.Type,"Simulink.BlockDiagram")
 sect = mlreportgen.report.Section(result.Name);
 add(sect,result);

7 Classes

7-144

 % Create SystemIO reporter and add to report
 ioRptr = slreportgen.report.SystemIO(result);
 add(sect,ioRptr);
 add(ch,sect);
 end
end

% Add chapter to report and close report
add(rpt,ch);
close(rpt);
rptview(rpt);

Tips
• The input and output signal properties reported by the SystemIO reporter correspond to Simulink

properties, which you can query by using get_param. For example, the DataType and
Dimensions properties correspond to the Simulink CompiledPortDataType and
CompiledPortDimensions properties of the port handles.

• For bus signals, Simulink determines the values of the CompiledPortDataType and
CompiledPortDimensions properties based on whether the signal is a nonvirtual or virtual bus.

Compatibility Considerations
Default values of InputSummaryProperties and OutputSummaryProperties
Behavior changed in R2021b

Starting in R2021b, the default value of the InputSummaryProperties property is ["Port"
"Inport Block" "Source" "Name" "DataType"] and the default value of the
OutputSummaryProperties property is ["Port" "Outport Block" "Destination" "Name"
"DataType"]. Before R2021b, the default value of the InputSummaryProperties was ["Source"
"Name" "DataType"] and the default value of the OutputSummaryProperties was
["Destination" "Name" "DataType"].

Before R2021b, a SystemIO object always reported the Inport or Outport block for a model signal
and the port number for a subsystem signal, regardless of the values of the
InputSummaryProperties or OutputSummaryProperties properties. Starting in R2021b, to
report the Inport or Outport block for either a model or subsystem signal, you must include Inport
Block or Outport Block in the property list in the InputSummaryProperties or
OutputSummaryProperties property. To report the port number, you must include Port in the
property list.

Specifying Inport or Outport blocks in property list
Behavior changed in R2021b

Starting in R2021b, you can specify Inport Block instead of Inport Block Name in the
InputSummaryProperties property and you can specify Outport Block instead of Outport
Block Name in the OutputSummaryProperties property. Inport Block Name and Outport
Block Name are still valid.

See Also
slreportgen.finder.DiagramResult | slreportgen.finder.BlockResult

 slreportgen.report.SystemIO class

7-145

Topics
“Report System Inputs and Outputs” on page 4-34
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2020a

7 Classes

7-146

slreportgen.report.TestSequence class
Package: slreportgen.report
Superclasses: slreportgen.report.Reporter

Test Sequence block reporter

Description
Use an object of the slreportgen.report.TestSequence class to report on a Simulink Test
Sequence block. Using a Test Sequence block in a Simulink model requires Simulink Test.

By default, a TestSequence reporter generates:

• Property tables for all of the symbols — input, output, local, constant, parameter, and data store
memory

• A nested list for the step hierarchy
• Details for each step including the step description, When condition, action statements, and a table

of transition conditions and next steps

If the Test Sequence block uses scenarios, the TestSequence reporter includes the scenario
parameter in the parameters table and a list for each scenario in the step hierarchy. In the report,
scenarios are identified by the scenario icon. The active scenario is also identified by the word
Active followed by the active scenario icon. For example:

The reporter adds a note to the report when the active scenario is controlled in the workspace. In this
case, the active scenario is not identified in the report.

Use the TestSequence reporter properties to filter the content and customize the content
formatting.

Note To use an slreportgen.report.TestSequence reporter in a report, you must create the
report using the slreportgen.report.Report class or subclass.

The slreportgen.report.TestSequence class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

 slreportgen.report.TestSequence class

7-147

Creation
Description

reporter = slreportgen.report.TestSequence() creates an empty TestSequence reporter
object based on the default template. You must specify a Test Sequence block to report by setting the
Object property. Use other properties to specify report options.

reporter = slreportgen.report.TestSequence(testSeqObject) creates a TestSequence
reporter and sets the Object property to the specified Test Sequence block.

reporter = slreportgen.report.TestSequence(Name,Value) sets the reporter properties
using name-value pairs. You can specify multiple name-value pair arguments in any order. Enclose
each property name in single or double quotes.

Properties
Object — Test Sequence block to report
[] (default) | character vector | string scalar | handle | slreportgen.finder.BlockResult |
slreportgen.finder.DiagramElementResult

Test Sequence block to report, specified as one of these types of values:

IncludeSymbols — Whether to include symbols
true (default) | false

Whether to include symbols in the report, specified as true or false. If IncludeSymbols is true,
the report includes property tables for the symbols. In the input and output symbol property tables,
the symbols are sorted by the port number. In the local, constant, parameter, and data store memory
tables, the symbols are sorted by the symbol name.

If the model was compiled before report generation, the values in the property tables are the values
after compilation. Otherwise, the property values are the values before compilation and a note at the
end of the Symbols section states that the model was not compiled. By default, models are compiled
during report generation. You can control whether a model is compiled during report generation by
setting the CompileModelBeforeReporting property of the slreportgen.report.Report
object that includes this reporter.
Data Types: logical

IncludeStepHierarchy — Whether to include step hierarchy
true (default) | false

Whether to include the step hierarchy, specified as true or false. If IncludeStepHierarchy is
true, the report includes the step hierarchy as a nested list. The step name in the list links to the
corresponding step content in the report.
Data Types: logical

IncludeStepContent — Whether to include step content
true (default) | false

Whether to include step content, specified as true or false. If IncludeStepContent is true, the
report includes the content for each step. In the reported step content, the step name links to the

7 Classes

7-148

step hierarchy in the report. You can filter the reported step content by using the
IncludeStepDescription, IncludeStepWhenCondition, IncludeStepAction, IncludeStepTransitions, and
IncludeStepRequirements properties.
Data Types: logical

IncludeStepDescription — Whether to include step description
true (default) | false

Whether to include the step description in the content reported for a step, specified as true or
false.
Data Types: logical

IncludeStepWhenCondition — Whether to include step When condition
true (default) | false

Whether to include the step When condition in the content reported for a step, specified as true or
false. The When condition is the condition that activates a When decomposition child step.
Data Types: logical

IncludeStepAction — Whether to include step actions
true (default) | false

Whether to include the step actions in the content reported for a step, specified as true or false.
Data Types: logical

IncludeStepTransitions — Whether to include step transitions table
true (default) | false

Whether to include the step transitions table in the content reported for a step, specified as true or
false. The step transitions table contains the transition conditions and the next steps.
Data Types: logical

IncludeStepRequirements — Whether to include step requirements
false (default) | true

Whether to include a link to the step requirements in the content reported for a step, specified as
true or false. Linking to the step requirements requires Simulink Requirements.
Data Types: logical

TableReporter — Table formatter
mlreportgen.report.BaseTable object

Table formatter for tables generated by this reporter, specified as an
mlreportgen.report.BaseTable object. The default value of this property is a BaseTable object
with the TableStyleName property set to the TestSequenceTable style, which is defined in the
default template for a TestSequence reporter. To customize the appearance of the table, modify the
properties of the default BaseTable object or replace it with your own BaseTable object. If you add
content to the Title property of the BaseTable object, the content appears in front of the table title
in the generated report.

ListFormatter — Formatter for step hierarchy list
mlreportgen.dom.UnorderedList object | mlreportgen.dom.OrderedList object

 slreportgen.report.TestSequence class

7-149

Formatter for the step hierarchy list, specified as an mlreportgen.dom.UnorderedList object or
mlreportgen.dom.OrderedList object. The UnorderedList or OrderedList object must not
contain list items.

The default value of this property is an UnorderedList object with the StyleName property set to
the TestSequenceList style, which is defined in the default template for a TestSequence reporter.
To customize the appearance of the list, modify the properties of the default UnorderedList object
or replace the object with your own UnorderedList or OrderedList object.

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified in one of these ways:

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

Name of the template for this reporter, specified as a character vector or string scalar. The template
for this reporter must be in the template library of the template source (TemplateSrc) for this
reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID, or an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
slreportgen.report.TestSequence.createTemplate Create Test Sequence block reporter template
slreportgen.report.TestSequence.customizeReporter Create custom Test Sequence block reporter

class
slreportgen.report.TestSequence.getClassFolder Get location of Test Sequence block reporter

class definition file
copy Create copy of a Simulink reporter object and

make deep copies of certain property values
getImpl Get implementation of reporter

Examples

Report on a Test Sequence Block

Use an slreportgen.report.TestSequence object to report on a Test Sequence block.

7 Classes

7-150

Import the MATLAB Report and Simulink Report API packages so that you do not have to use long,
fully qualified class names.

import mlreportgen.report.*
import slreportgen.report.*

Create a Simulink report.

rpt = slreportgen.report.Report("myTestSequenceReport","pdf");

Load a model that has a test harness.

model_name = "sltestTestSequenceExample";
load_system(model_name);

Find and load the test harness that contains the Test Sequence block to report.

harness = sltest.harness.find(strcat(model_name,"/shift_controller"));
sltest.harness.load(harness.ownerFullPath,harness.name);
testSeqObj = strcat(harness.name,"/Test Sequence");

Create a chapter for the Test Seqence block.

chapter = Chapter(testSeqObj);

Create a reporter for the Test Seqence block.

rptr = TestSequence(testSeqObj);

Append the reporter to the chapter and the chapter to the report.

append(chapter,rptr);
append(rpt,chapter);

Close the report, test harness, and model. View the report.

close(rpt);
sltest.harness.close(harness.ownerFullPath,harness.name);
close_system(model_name);
rptview(rpt);

See Also
Test Sequence

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”
“Test Sequence Editor” (Simulink Test)

Introduced in R2020b

 slreportgen.report.TestSequence class

7-151

slreportgen.report.TruthTable class
Package: slreportgen.report
Superclasses: slreportgen.report.Reporter

Truth table reporter

Description
Create a Simulink truth table block or Stateflow truth table object reporter.

Note To use a TruthTable reporter in a report, you must create the report using the
slreportgen.report.Report class.

Construction
rptr = TruthTable() creates an empty TruthTable reporter. Use its properties to specify the
truth table on which to report and specify report options and format.

rptr = TruthTable(truthtableobj) creates a TruthTable reporter for the truth table
specified by truthtableobj, which can be either a block or a Stateflow object. By default, the
reporter generates a table of the conditions and actions of the truth table.

rptr = TruthTable(Name,Value) creates a truth table reporter with additional options specified
by one or more Name,Value pair arguments. Name is a property name and Value is the
corresponding value. Name must appear inside single quotes ('') or double quotes (" ") . You can
specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments

truthtableobj — Truth table object
Simulink Truth Table block path | Simulink Truth Table block handle | Stateflow Truth Table handle

See the Object property.

Properties
Object — Truth table block or object
Simulink Truth Table block path | Simulink Truth Table block handle | Stateflow Truth Table handle

Simulink Truth Table block or Stateflow truth table object, specified as a path or handle.

IncludeConditionTableHeader — Include headers in condition table
true (default) | false

Specify whether to include headers in the truth table condition table, specified as a logical. If this
property is true, the report includes column headers that identify the contents of the table columns.

IncludeConditionTableRowNumber — Include row numbers in condition table
true (default) | false

7 Classes

7-152

Specify whether to include row numbers in the truth table condition table, specified as a logical. If
this property is true, each row of the condition table starts with a row number.

IncludeConditionTableConditionCol — Include condition column in condition table
true (default) | false

Specify whether to include the condition column in the truth table condition table, specified as a
logical. If this property is true, the report includes the conditions that trigger the decisions.

IncludeConditionTableDescriptionCol — Include description column in condition table
true (default) | false

Specify whether to include the description column in the truth table condition table, specified as a
logical. If this property is true, the report includes descriptions of the truth table conditions.

ConditionTableReporter — Reporter for truth table condition table
BaseTable reporter (default) | custom reporter

Reporter used by the TruthTable reporter to create the truth table condition table. This property is
set by default to an instance of a BaseTable reporter.

Use the associated BaseTable reporter properties to customize the appearance of the condition
table. If the condition table is too wide to fit legibly on a page, use the MaxCols property of the
BaseTable reporter to generate the condition table as a set of table slices that fit legibly.

Note The TruthTable reporter always repeats the first two columns of the condition table in each
slice. It does not use the RepeatCols property of the BaseTable or custom reporter.

IncludeActionTableHeader — Include headers in action table
true (default) | false

Specify whether to include headers in the truth table action table, specified as a logical. If this
property is true, the action table includes the column headers, such as "Description" that identify
the contents of each column.

IncludeActionTableRowNumber — Include row numbers in action table
true (default) | false

Specify whether to include row numbers in the truth table action table, specified as a logical. If this
property is true, each row of the action table starts with a row number.

IncludeActionTableActionCol — Include action column in action table
true (default) | false

Specify whether to include the action column in the truth table action table, specified as a logical. If
this property is true, each row of the action table lists the executable action statements for each
action.

IncludeActionTableDescriptionCol — Include description column in action table
true (default) | false

Specify whether to include the description column in the truth table action table, specified as a
logical. If this property is true, each row of the action table contains a description of the
corresponding action.

 slreportgen.report.TruthTable class

7-153

ActionTableReporter — Reporter for truth table action table
BaseTable reporter (default) | custom reporter

Reporter used by the TruthTable reporter to create the truth table's action table. This property is
set by default to an instance of a BaseTable reporter. You can customize the appearance of the
action table by changing the properties of this table reporter or by replacing it with a customized
version of a BaseTable reporter.

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified in one of these ways:

• Character vector or string scalar that specifies the path of the file that contains the template for
this reporter

• Reporter or report whose template is used for this reporter or whose template library contains the
template for this reporter

• DOM document or document part whose template is used for this reporter or whose template
library contains the template for this reporter

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

Name of the template for this reporter, specified as a character vector or string scalar. The template
for this reporter must be in the template library of the template source (TemplateSrc) for this
reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID, or an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods

createTemplate Create truth table template
customizeReporter Create custom truth table reporter class
getClassFolder Location of truth table class definition file

Inherited Methods

copy Create copy of a Simulink reporter object and
make deep copies of certain property values

getImpl Get implementation of reporter

7 Classes

7-154

Examples
Add Truth Table to a PDF Report

import slreportgen.report.*
import mlreportgen.report.*

model_name = 'sf_climate_control';
openExample(model_name);

rpt = slreportgen.report.Report('output','pdf');
truthtableobj = 'sf_climate_control/ClimateController';

chapter = Chapter(truthtableobj);
rptr = TruthTable(truthtableobj);
rptr.IncludeConditionTableRowNumber = false;
add(chapter,rptr)
add(rpt,chapter)

close(rpt)
close_system(model_name)
rptview(rpt)

 slreportgen.report.TruthTable class

7-155

Slice Truth Table Condition Table
import slreportgen.report.*
import mlreportgen.report.*

model_name = 'sf_climate_control';
openExample('sf_climate_control');

rpt = slreportgen.report.Report('output','pdf');
truthtableobj = 'sf_climate_control/ClimateController';

chapter = Chapter(truthtableobj);
rptr = TruthTable(truthtableobj);
rptr.IncludeConditionTableRowNumber = false;
rptr.ConditionTableReporter.MaxCols = 4;
add(chapter,rptr)
add(rpt,chapter)

close(rpt)
close_system(model_name)
rptview(rpt)

7 Classes

7-156

See Also
mlreportgen.report.BaseTable | slreportgen.finder.DiagramElementResult |
slreportgen.finder.StateflowDiagramElementFinder |
slreportgen.finder.DiagramElementFinder | slreportgen.finder.BlockResult |
slreportgen.finder.BlockFinder | mlreportgen.utils.TableSlice |
mlreportgen.utils.TableSlicer | slreportgen.utils.isTruthTable

Introduced in R2018b

 slreportgen.report.TruthTable class

7-157

slreportgen.finder.AnnotationFinder class
Package: slreportgen.finder

Find Simulink annotation objects

Description
Find annotation objects in a Simulink or Stateflow diagram.

Construction
finder = AnnotationFinder(diagram) creates a finder that finds by default all annotations in
the specified diagram. To constrain the search to specific types of annotations, use the properties of
this finder.

Note This finder provides two ways to get search results:

1 To return the search results as an array, use the find method. Add the results directly to a
report or process the results in a for loop.

2 To iterate through the results one at a time, use the hasNext and next methods in a while loop.

Neither option has a performance advantage.

finder = AnnotationFinder(Name,Value) sets properties using name-value pairs. You can
specify multiple name-value pair arguments in any order. Enclose each property name in single or
double quotes.

Input Arguments

diagram — Diagram to search
path | handle | chart ID | chart object

See Container property.

Properties
Container — Diagram to search
path | handle | chart ID | chart object

Diagram in which to search, specified as one of these values:

• Handle to a Simulink block
• Path to a Simulink block
• Handle to a Stateflow chart block
• Path to a Stateflow chart block
• Stateflow chart ID

7 Classes

7-158

• Stateflow chart object

Properties — Properties of objects to find
cell array

Properties of objects to find, specified as a cell array of name-value pairs. The finder returns only
objects that have the specified properties with the specified values.
Example: finder.Properties = {'Gain','5'}

Methods
results = find(finder) finds annotations in the diagram specified by the finder. This method
returns the annotations it finds wrapped in result objects of type
slreportgen.finder.DiagramElementResult. To add tables of the annotation properties, add
the results objects directly to the report or add them to a reporter that you then add to a report. The
reports to which you can add the results of this method must be reports of type
slreportgen.report.Report.

tf = hasNext(finder) determines if the diagram that the finder searches contains at least one
annotation. If the diagram has at least one annotation, the hasNext method queues that annotation
as the next annotation that the next method will return. The hasNext method then returns true.
Use the next method to obtain that annotation. On subsequent calls, the hasNext method
determines if the diagram has an annotation that the next method has not yet retrieved. It queues
the annotation for the next method to retrieve and returns true. If there are no more annotations to
be retrieved, this method returns false. To search a diagram progressively for annotations, use the
hasNext method with the next method in a while loop.

result = next(finder) returns the next search result in the result queue that the hasNext
method created. This method returns the annotation that it finds wrapped in a result object of type
slreportgen.finder.DiagramElementResult. To add tables of the annotation properties, add
the results objects directly to the report or add them to a reporter that you then add to a report. The
reports to which you can add the results of this method must be of type
slreportgen.report.Report.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Find Annotations in a Model

Create a report that finds annotations in the slrgex_sf_car model.

import mlreportgen.report.*
import slreportgen.report.*
import slreportgen.finder.*

model_name = 'slrgex_sf_car';
load_system(model_name);

rpt = slreportgen.report.Report('output','pdf');

 slreportgen.finder.AnnotationFinder class

7-159

add(rpt, TitlePage("Title",...
 sprintf('Annotations in %s Model',model_name)));
add(rpt, TableOfContents);

diagFinder = SystemDiagramFinder(model_name);
diagrams = find(diagFinder);
while hasNext(diagFinder)
 diagram = next(diagFinder);
 annotFinder = AnnotationFinder(diagram.Object);
 annotations = find(annotFinder);
 if ~isempty(annotations)
 chapter = Chapter("Title",diagram.Name);
 add(chapter, diagram);
 sect = Section("Title","Annotations");
 add(sect,annotations);
 add(chapter,sect);
 add(rpt,chapter);
 end
end

close(rpt);
close_system(model_name);
rptview(rpt);

See Also
slreportgen.report.Report | slreportgen.finder.SystemDiagramFinder |
slreportgen.report.SimulinkObjectProperties | slreportgen.report.Diagram |
slreportgen.finder.BlockFinder | slreportgen.finder.DiagramElementResult

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2017b

7 Classes

7-160

slreportgen.finder.BlockFinder class
Package: slreportgen.finder

Find Simulink blocks

Description
Finds blocks in a Simulink diagram.

Construction
finder = BlockFinder(diagram) creates a finder that finds by default all types of blocks in the
specified Simulink block diagram. To constrain the search to specific types of blocks, use the
properties of the finder.

Note This finder provides two ways to get search results:

1 To return the search results as an array, use the find method. Add the results directly to a
report or process the results in a for loop.

2 To iterate through the results one at a time, use the hasNext and next methods in a while loop.

Neither option has a performance advantage.

finder = BlockFinder(Name,Value) sets properties using name-value pairs. You can specify
multiple name-value pair arguments in any order. Enclose each property name in single quotes.

Input Arguments

diagram — Block diagram to search
path | handle

See Container property.

Properties
Container — Diagram to search
path | handle

Diagram in which to search, specified as one of these values:

• Handle to a Simulink model or subsystem
• Path to a Simulink model or subsystem

BlockTypes — Types of blocks to find
string | character array | string array | cell array of character arrays

Type of block to find, such as Gain, specified as a string or character array, or a set of block types to
find, specified as a string array or a cell array of character arrays.

 slreportgen.finder.BlockFinder class

7-161

IncludeCommented — Include commented-out blocks
false (default) | true

Whether to include commented-out blocks in the search results, specified as a logical. If false,
commented-out blocks are excluded from the search results.

IncludeVariants — Variants to include
"Active" (default) | "All" | "ActivePlusCode"

Variants of a variant block to include in the search results, specified as one of the values in the table.
You can specify the value as a string scalar or a character vector.

Value Description
"Active" Active variants (default)
"All" All variants
"ActivePlusCode" Active variants and code variants

Properties — Properties of objects to find
cell array

Properties of objects to find, specified as a cell array of name-value pairs. The finder returns only
objects that have the specified properties with the specified values.
Example: finder.Properties = {'Gain','5'}

Methods
results = find(finder) finds blocks in the diagram specified by the finder. This method returns
the blocks it finds wrapped in result objects of type slreportgen.finder.BlockResult. To add
tables of the block properties, add the results objects directly to the report or add them to a reporter
that you then add to a report. The reports to which you can add the results of this method must be
of reports of type slreportgen.report.Report

tf = hasNext(finder) determines if the diagram that the finder searches contains at least one
block. If the diagram has at least one block, the hasNext method queues that block as the next block
that the next method will return. The hasNext method then returns true. Use the next method to
obtain that block. On subsequent calls, the hasNext method determines if the diagram has a block
that the next method has not yet retrieved. It queues the block for the next method to retrieve and
returns true. If there are no more blocks to be retrieved, this method returns false. To search a
diagram progressively for blocks, use the hasNext method with the next method in a while loop.

result = next(finder) returns the next search result in the result queue that the hasNext
method created. This method returns the block that it finds wrapped in a result object of type
slreportgen.finder.BlockResult. To add tables of the block properties, add the result object to
the report directly or add it to a reporter that you then add to a report. The reports to which you can
add the results of this method must be of type slreportgen.report.Report.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

7 Classes

7-162

Examples
Find Inport and Outport Blocks in a Model

Find Inport and Output blocks in the slrgex_sf_car model.

import mlreportgen.report.*
import slreportgen.report.*
import slreportgen.finder.*

model_name = 'slrgex_sf_car';
load_system(model_name)
rpt = slreportgen.report.Report('output','pdf');

add(rpt,TitlePage("Title",...
 sprintf('I/O Blocks in %s Model',model_name)));
add(rpt,TableOfContents);

diagFinder = SystemDiagramFinder(model_name);
diagFinder.IncludeRoot = false;
while hasNext(diagFinder)
 diagram = next(diagFinder);
 chapter = Chapter("Title",diagram.Name);
 add(chapter,diagram)
 sect = Section("Title","Inport Blocks");
 ioFinder = BlockFinder(diagram.Object);
 ioFinder.BlockTypes = "Inport";
 blocks = find(ioFinder);
 for block = blocks
 add(sect,block)
 end
 add(chapter,sect);
 sect = Section("Title","Outport Blocks");
 ioFinder = BlockFinder(diagram.Object);
 ioFinder.BlockTypes = "Outport";
 outblocks = find(ioFinder);
 for block = outblocks
 add(sect,block)
 end
 add(chapter,sect)
 add(rpt,chapter)
end
close(rpt)
close_system(model_name)
rptview(rpt)

See Also
slreportgen.report.Report | slreportgen.finder.DiagramFinder |
slreportgen.finder.DiagramElementFinder |
slreportgen.finder.SystemDiagramFinder |
slreportgen.report.SimulinkObjectProperties | slreportgen.report.Diagram |
slreportgen.report.SimulinkObjectProperties | slreportgen.finder.BlockResult

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

 slreportgen.finder.BlockFinder class

7-163

Introduced in R2017b

7 Classes

7-164

slreportgen.finder.BlockResult class
Package: slreportgen.finder

Create block finder result object

Description
Block search result object for a block in a Simulink diagram.

Construction
result = BlockResult(block) creates a search result object for a block found by a
BlockFinder. The result object contains the Simulink block.

Note The simulink.finder.BlockFinder find method creates objects of this type for each block
that it finds. You do not need to create this object yourself.

finder = BlockResult(Name,Value) sets properties using name-value pairs. You can specify
multiple name-value pair arguments in any order. Enclose each property name in single quotes.

Input Arguments

block — Simulink or Stateflow block
block path | block handle

Simulink block, specified as a path or block handle to that block.

Properties
Object — Block handle
handle

This read-only property contains a handle to the block returned in this result.

Name — Name of block
string

This read-only property specifies the name of the block returned in this result.

Type — Block type
string

This read-only property specifies the type of the block returned in this result.
Example: "Gain"

DiagramPath — Path of block
string

This read-only property returns the path of the block returned in this result.

 slreportgen.finder.BlockResult class

7-165

Tag — Additional information
string | character vector | object | ...

Additional information to add to this result. You can set it to any type of value.

Methods
getDiagramReporter Returns Diagram reporter for this block result
getReporter Get block reporter

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also
slreportgen.finder.BlockFinder | slreportgen.report.Report

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2017b

7 Classes

7-166

slreportgen.finder.ChartDiagramFinder class
Package: slreportgen.finder

Create Stateflow chart finder

Description
Finds Stateflow charts.

Construction
finder = ChartDiagramFinder(container) creates a finder that finds by default all
uncommented Stateflow chart diagrams in the specified container. To constrain the search to
specific types of diagrams, use the properties of this finder.

Note This finder can operate in either find or iterator mode. In find mode, use its find method to
return the results of a search as an array of results. In iterator mode, use its hasNext and next
methods to return the results of a search one-by-one. When searching in models that have many
model references, use iterator mode. Iterator mode closes a model after compiling and searching it,
whereas find mode keeps all the models that it searches open. Having many open models can
consume all system memory and slow report generation. Iterator mode is slower than find mode, so
use find mode to search models that reference few or no other models.

finder = ChartDiagramFinder(Name,Value) sets properties using name-value pairs. You can
specify multiple name-value pair arguments in any order. Enclose each property name in single
quotes.

Input Arguments

Container — Chart container to search
path | handle | chart ID | chart object

See Container property.

Properties
Container — Chart container to search
path | handle | chart ID | chart object

Chart container in which to search, specified as one of these values:

• Handle of a Stateflow chart block
• Path to a Stateflow chart block
• Stateflow chart ID
• Stateflow chart object

SearchDepth — Depth of system diagram search
inf (default) | positive integer

 slreportgen.finder.ChartDiagramFinder class

7-167

Depth of system diagram search, specified as inf or a positive integer. SearchDepth specifies how
many levels deep to search a diagram container for diagrams. To search all levels, use inf.

IncludeMaskedSubsystems — Search masked subsystems
true (default) | false

Choice to search masked subsystems, specified as a logical. If this property is true, the finder
searches masked Subsystem blocks in the diagram container. It searches to the specified
SearchDepth and includes the diagrams it finds in the search results.

IncludeReferencedModels — Search model references
true (default) | false

Choice to search referenced models, specified as a logical. If this property is true, the finder
searches models referenced in the diagram container. It searches to the specified SearchDepth and
includes the diagrams it finds in the search results.

IncludeSimulinkLibraryLinks — Search Simulink library links
true (default) | false

Choice to search Simulink library links, specified as a logical. If both this property and
IncludeMaskedSubsystems are true, the finder searches links in the diagram container to both
Subsystem and masked Subsystem blocks in Simulink libraries. It searches to the specified
SearchDepth and includes the diagrams it finds in the search results. If this property is true, but
IncludeMaskedSubsystems is false, the finder searches only links to Subsystem blocks in
Simulink libraries.

IncludeUserLibraryLinks — Search user library links
true (default) | false

Choice to search user library links, specified as a logical. If this property is true and the
IncludeMaskedSubsystems property is true, the finder searches links in the diagram container to
Subsystem and masked Subsystem blocks in user libraries. It searches to the specified SearchDepth
and includes the diagrams it finds in the search results. If this property is true, but the
IncludeMaskedSubsystems property is false, the finder searches only links to Subsystem blocks
in user libraries.

IncludeCommented — Include commented-out charts
false (default) | true

Choice to include commented-out charts in the search results, specified as a logical. If false,
commented-out charts are excluded from the search results.

IncludeVariants — Include diagram variants
string | character vector

Variants to search for diagrams, specified as a string or character vector. The default value is
Active. Valid values are:

• All — All variants
• Active — Only active variants
• ActivePlusCode — All active variants and code variants

7 Classes

7-168

Properties — Properties of objects to find
cell array

Properties of objects to find, specified as a cell array of name-value pairs. The finder returns only
objects that have the specified properties with the specified values.
Example: finder.Properties = {'Gain','5'}

AutoCloseModel — Whether to close models
true (default) | false

Whether to close models, specified as true or false. If true, the next method of the finder closes
the currently open model before moving to the next model to search. Closing models prevents
excessive consumption of memory when searching a model that references many models.

Note The find method of the finder ignores this property and leaves all referenced models open.
For this reason, you should not use the find method to search models with many model references.

Methods
results = find(finder) finds chart diagrams in the container specified by the finder. The
finder is an slreportgen.finder.ChartDiagramFinder object. results is an array of
slreportgen.finder.DiagramResult objects, each of which contains a chart diagram found by
this method. Adding this array to a report or reporter adds images of the charts that it contains. The
reports to which you can add the results of this method are reports of type
slreportgen.report.Report or another reporter object, such as an
slreportgen.report.Chapter reporter.

tf = hasNext(finder) determines if the container that the finder searches contains at least one
chart. If the container has at least one chart, the hasNext method queues that chart as the next
chart that the next method will return. The hasNext method then returns true. Use the next
method to obtain that chart. On subsequent calls, the hasNext method determines if the container
has a chart that the next has not yet retrieved. It queues the chart for the next method to retrieve
and returns true. If there are no more charts exist to be retrieved, this method returns false. To
search a container progressively for charts, use the hasNext method with the next method in a
while loop.

Note If the current result is the last result in the search queue for the current chart and the
AutoCloseModel property is true, this method closes the current chart before it opens the next
chart. Although this increases search time, it reduces memory consumption when searching a chart
that references many other charts. If your chart does not reference many other charts, to speed up
the search, set the AutoCloseModel property to false or use the find method.

result = next(result) returns the next search result in the result queue that the hasNext
method created. The search result contains the resulting chart. Adding this result object to a report
or reporter adds a Diagram reporter for the chart.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

 slreportgen.finder.ChartDiagramFinder class

7-169

Examples
Find Stateflow Charts

Create a report that includes images of all Stateflow charts in the sldemo_fuelsys model. Use a
separate chapter for each chart.

import mlreportgen.report.*
import slreportgen.report.*
import slreportgen.finder.*

model_name = "slrgex_fuelsys";
load_system(model_name);
rpt = slreportgen.report.Report("output","pdf");

add(rpt, TitlePage("Title",sprintf("%s Charts",...
 model_name)));
add(rpt, TableOfContents);
chapter = Chapter("Root System");
add(chapter, Diagram(model_name));
add(rpt,chapter);

chapter = Chapter("Charts");
finder = ChartDiagramFinder(model_name);
results = find(finder);
for result = results
 section = Section("Title",result.Name);
 add(section,result);
 add(chapter,section);
end
add(rpt, chapter);

close(rpt);
close_system(model_name);
rptview(rpt);

See Also
slreportgen.finder.DiagramFinder |
slreportgen.finder.StateflowDiagramElementFinder |
slreportgen.finder.StateFinder | slreportgen.report.Report |
slreportgen.report.StateflowObjectProperties |
slreportgen.finder.DiagramElementFinder | slreportgen.finder.DiagramResult

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2017b

7 Classes

7-170

slreportgen.finder.DataDictionaryFinder class
Package: slreportgen.finder slreportgen.finder slreportgen.finder
slreportgen.finder
Superclasses: mlreportgen.finder.Finder

Find data dictionaries

Description
Use an object of the slreportgen.finder.DataDictionaryFinder class to find Simulink data
dictionaries.

The slreportgen.finder.DataDictionaryFinder class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
Description

finder = slreportgen.finder.DataDictionaryFinder() creates a data dictionary finder and
sets the Container property to 'MATLABPath'.

You can constrain the search by setting the properties of the finder. Use the methods of the finder to
perform the search.

Note This finder provides two ways to get search results:

1 To return the search results as an array, use the find method. Add the results directly to a
report or process the results in a for loop.

2 To iterate through the results one at a time, use the hasNext and next methods in a while loop.

Neither option has a performance advantage.

finder = slreportgen.finder.DataDictionaryFinder(searchFolder) creates a data
dictionary finder and sets the Container property to the folder or folders specified by
searchFolder.

finder = slreportgen.finder.DataDictionaryFinder(Name,Value) sets properties using
name-value pairs. You can specify multiple name-value pair arguments in any order. Enclose each
property name in single or double quotes.

 slreportgen.finder.DataDictionaryFinder class

7-171

Properties
Container — Folders to search for data dictionaries
string array | character vector | cell array of character vectors

Folders to search for data dictionaries, specified as a string array, character vector, or cell array of
character vectors. Strings and character vectors can include the * and the ** wildcards. Characters
next to the ** wildcard must be file separators. For example, to find all data dictionaries in the
exampleFolder folder and its subfolders, set Container to "exampleFolder**". If Container
is set to 'MATLABPath', the finder searches for data dictionaries in the current folder and all folders
on the MATLAB path.

Name — Data dictionary to find
string scalar | character vector

Data dictionary to find, specified as a string scalar or character vector. The Name property value can
include the * wildcard. For example, to find all data dictionaries that begin with
sldemo_fuelsys_dd, set the Name property to "sldemo_fuelsys_dd*". The name or expression
specified in this property must have no file name extension or the extension .sldd.

Properties — Properties of data dictionaries to find
{} (default) | cell array

Properties of the data dictionaries to find, specified as a cell array of name-value pairs. Use the
Properties property to filter the finder results by the data dictionary properties. The finder
searches the folders specified by the Container property for data dictionaries with names that
match the Name property and that have the specified properties values. For data dictionary
properties, see Simulink.data.Dictionary. For example, to return only the data dictionaries that
have access to the base workspace, set Properties to {'HasAccessToBaseWorkspace',true}.

Methods
Public Methods

find results = find(finder) finds data
dictionaries in a model or subsystem according to
the constraints specified by the finder. The
variables are returned as an array of
slreportgen.finder.DataDictionaryResul
t objects.

Append all of the results directly to a report or
process the results in a for loop. In the loop, you
can customize the content and formatting for a
data dictionary by setting the properties of the
reporter for the data dictionary. Get the reporter
by using the getReporter method of the
slreportgen.finder.DataDictionaryResul
t object that contains the data dictionary.

7 Classes

7-172

hasNext tf = hasNext(finder) returns true if a data
dictionary returned by the finder is available for
the next method to retrieve. If the finder does
not return any data dictionaries, or if all
dictionaries have been retrieved, hasNext
returns false. Use hasNext and next to iterate
through the data dictionaries in a while loop. In
the loop, you can customize the content and
formatting for a data dictionary by setting
properties of the reporter for the data dictionary.
Get the reporter by using the getReporter
method of the
slreportgen.finder.DataDictionaryResul
t object.

next result = next(finder) returns the next data
dictionary as an
slreportgen.finder.DataDictionaryResul
t object. Use hasNext and next to iterate
through found data dictionaries in a while loop.
In the loop, you can customize the content and
formatting for a data dictionary by setting the
properties of the reporter for the data dictionary.
Get the reporter by using the getReporter
method of the
slreportgen.finder.DataDictionaryResul
t object.

Examples

Find and Report on Data Dictionary

To report on data dictionaries, create an slreportgen.DataDictionaryFinder object. Use the
object properties to constrain the search and the methods to get the results.

Import the MATLAB Report and Simulink Report API packages so that you do not have to use long,
fully qualified class names.

import mlreportgen.report.*
import slreportgen.finder.*
import slreportgen.report.*

Create a Simulink report and append a table of contents to the report.

rpt = slreportgen.report.Report("MyReport","html-file");
append(rpt,TableOfContents);

Create a Simulink data dictionary finder to search the entire MATLAB path.

f = DataDictionaryFinder();

Constrain the finder to find only data dictionaries that have names that begin with slrgex_fuelsys.

f.Name = "slrgex_fuelsys*";

 slreportgen.finder.DataDictionaryFinder class

7-173

Create a chapter for the data dictionaries.

ch = Chapter("Data Dictionaries");

For each found dictionary, create a section and append it to the chapter.

while hasNext(f)
 result = next(f);
 s = Section(result.Name);
 append(s,result);
 append(ch,s);
end

Append the chapter to the report. Close and view the report.

append(rpt,ch);
close(rpt);
rptview(rpt);

See Also
slreportgen.finder.DataDictionaryResult | slreportgen.report.DataDictionary

Topics
“What Is a Data Dictionary?”
“Report Generation for Simulink and Stateflow Elements” on page 1-9

Introduced in R2020b

7 Classes

7-174

slreportgen.finder.DataDictionaryResult class
Package: slreportgen.finder slreportgen.finder

Data dictionary search result object

Description
An object of the slreportgen.finder.DataDictionaryResult class represents a result of a
search for data dictionaries. You can append a DataDictionaryResult object directly to a report.
Alternatively, you can use the getReporter method to access the
slreportgen.report.DataDictionary reporter for the result and then customize the reporter
and append it to the report.

The slreportgen.finder.DataDictionaryResult class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
You do not create an slreportgen.finder.DataDictionaryResult object explicitly. The
slreportgen.finder.DataDictionaryFinder find and next methods create an
slreportgen.finder.DataDictionaryResult object for each data dictionary that is found.

Properties
Object — Full path of data dictionary
string scalar

Full path of the data dictionary represented by this result, specified as a string scalar. This property is
read-only.

Name — File name of data dictionary
string scalar

File name of data dictionary represented by this result, specified as a string scalar. This property is
read-only.

Tag — Additional information
string | character vector | number | ...

Additional information to save with this result. You can set this property to any type of value.

 slreportgen.finder.DataDictionaryResult class

7-175

Methods
Public Methods

getReporter reporter = getReporter(
dictionaryResult) returns the
slreportgen.report.DataDictionary
reporter object for the specified data dictionary
result. Use the reporter to customize the
information reported and the formatting of the
information.

Examples

Customize Reporter for Data Dictionary Result

Use the getReporter method of an slreportgen.finder.DataDictionaryResult object to
access the data dictionary reporter for the result. Then, customize the reporter by setting its
properties.

Import the MATLAB and Simulink Report API packages so that you do not have to use long, fully
qualified class names.

import mlreportgen.report.*
import slreportgen.report.*

Create a Simulink report and add a table of contents.

rpt = slreportgen.report.Report("MyReport","html-file");
append(rpt,TableOfContents);

Create a dictionary finder that searches the entire MATLAB path. Find only data dictionaries with
names that begin with slrgex__fuelsys.

f = slreportgen.finder.DataDictionaryFinder();
f.Name = "slrgex_fuelsys*";

Create a chapter with a section for each data dictionary result. For each result, customize the
reporter to include only the Name, Value, and Class properties in the Design Data summary table.

ch = Chapter("Data Dictionaries");
while hasNext(f)
 result = next(f);
 s = Section(result.Name);
 rptr = getReporter(result);
 rptr.SummaryProperties = ["Name" "Value" "Class"];
 append(s,rptr);
 append(ch,s);
end

Add the chapter to the report. Close and view the report.

append(rpt,ch);
close(rpt);
rptview(rpt);

7 Classes

7-176

The report has a section for each of the found dictionaries, slrgex_fuelsys.sldd and
slrgex_fuelsys_fuel_rate_control.sldd. The summary table for each dictionary includes
only the Name, Value, and Class properties.

See Also
slreportgen.report.DataDictionary | slreportgen.finder.DataDictionaryFinder

Topics
“What Is a Data Dictionary?”
“Report Generation for Simulink and Stateflow Elements” on page 1-9

Introduced in R2020b

 slreportgen.finder.DataDictionaryResult class

7-177

slreportgen.finder.DiagramElementFinder class
Package: slreportgen.finder

Create diagram element finder object

Description
Finds elements in a Simulink block or Stateflow chart diagram.

Construction
finder = DiagramElementFinder(diagram) creates a finder that finds elements of a Simulink
block or Stateflow chart diagram. By default this finder finds blocks, annotations, lines, states, and
other elements in the diagram. Use the properties of the finder to constrain the search to specific
types of elements.

Note This finder provides two ways to get search results:

1 To return the search results as an array, use the find method. Add the results directly to a
report or process the results in a for loop.

2 To iterate through the results one at a time, use the hasNext and next methods in a while loop.

Neither option has a performance advantage.

finder = DiagramElementFinder(Name,Value) sets properties using name-value pairs. You can
specify multiple name-value pair arguments in any order. Enclose each property name in single
quotes.

Input Arguments

diagram — Diagram to search
path | handle | chart ID | chart object

See Container property.

Properties
Container — Diagram to search
path | handle | chart ID | chart object

Diagram in which to search, specified as one of these values:

• Handle to a Simulink block
• Path to a Simulink block
• Handle to a Stateflow chart block
• Path to a Stateflow chart block

7 Classes

7-178

• Stateflow chart ID
• Stateflow chart object

Types — Types of diagram elements to find
string | character array | array of strings | cell array of character arrays

Types of Simulink or Stateflow diagram elements to find, specified as a string, character array, array
of strings, or a cell array of character arrays. If the type is an array, it specifies a set of element types.
The default is All or all, which finds all elements in all diagrams. Use one of these values to
constrain the search to specific diagram element types. You can use either the fully qualified name or
the short name.

Fully Qualified Name Short Name
All all
Simulink.Annotation annotation
Simulink.Block block
Simulink.Segment line
Simulink.Port port
Stateflow.Annotation sf_annotation
Stateflow.Box box
Stateflow.EMFunction emfunction
Stateflow.Function function
Stateflow.Junction junction
Stateflow.Port sf_port
Stateflow.SLFunction slfunction
Stateflow.State state
Stateflow.Transition transition
Stateflow.TruthTable truthtable

IncludeCommented — Include commented-out diagram elements
false (default) | true

Choice to include commented-out diagram elements in the search results, specified as a logical. If
false, commented-out elements are excluded from the search results.

IncludeVariants — Include diagram variants
string | character vector

Variants to search for diagrams, specified as a string or character vector. The default value is
Active. Valid values are:

• All — All variants
• Active — Only active variants
• ActivePlusCode — All active variants and code variants

Properties — Properties of objects to find
cell array

 slreportgen.finder.DiagramElementFinder class

7-179

Properties of objects to find, specified as a cell array of name-value pairs. The finder returns only
objects that have the specified properties with the specified values.
Example: finder.Properties = {'Gain','5'}

Methods
results = find(finder) finds diagram elements in the diagram specified by the finder. This
method returns the diagram elements it finds wrapped in result objects of type
slreportgen.finder.DiagramElementResult. To add tables of the diagram element properties,
add the results objects directly to the report or add them to a reporter that you then add to a report.
The reports to which you can add the results of this method must be reports of type
slreportgen.report.Report.

tf = hasNext(finder) determines if the diagram that the finder searches contains at least one
element. If the diagram has at least one element, the hasNext method queues that element as the
next element that the next method will return. The hasNext method then returns true. Use the
next method to obtain that element. On subsequent calls, the hasNext method determines if the
diagram has an element that the next method has not yet retrieved. It queues the element for the
next method to retrieve and returns true. If there are no more elements exist to be retrieved, this
method returns false. To search a diagram progressively for elements, use the hasNext method
with the next method in a while loop.

result = next(finder) returns the next search result in the result queue that the hasNext
method created. This method returns the diagram element that it finds wrapped in a result object of
type slreportgen.finder.DiagramElementResult. To add tables of the diagram element
properties, add the results objects directly to the report or add them to a reporter that you then add
to a report. The reports to which you can add the results of this method must be of type
slreportgen.report.Report.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Find Block, Annotation, and Line Elements

Find the block, annotation, and line diagram elements to a search depth of 1 in the f14 model.

import mlreportgen.report.*
import slreportgen.report.*
import slreportgen.finder.*

model_name = 'f14';
load_system(model_name);

rpt = slreportgen.report.Report('output','pdf');
add(rpt, TitlePage("Title",sprintf('%s Model',...
 model_name)));
add(rpt, TableOfContents);

diagFinder = SystemDiagramFinder("Container", ...
 model_name,"SearchDepth",1);

7 Classes

7-180

while hasNext(diagFinder)
 system = next(diagFinder);
 chapter = Chapter("Title",system.Name);
 add(chapter,system);
 sect = Section("Title","Diagram Elements");
 elemFinder = DiagramElementFinder("Container", ...
 system.Object, "Types",...
 ["block" "annotation" "line"]);
 elems = find(elemFinder);
 for elem = elems
 add(sect, elem);
 end
 add(chapter, sect);
 add(rpt, chapter);
end

close(rpt);
close_system(model_name);
rptview(rpt);

See Also
slreportgen.report.Report | slreportgen.finder.DiagramFinder |
slreportgen.finder.SystemDiagramFinder | slreportgen.finder.ChartDiagramFinder |
slreportgen.finder.StateflowDiagramElementFinder |
slreportgen.finder.StateFinder | slreportgen.report.Diagram |
slreportgen.finder.BlockFinder | slreportgen.finder.AnnotationFinder |
slreportgen.finder.DiagramElementResult

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2017b

 slreportgen.finder.DiagramElementFinder class

7-181

slreportgen.finder.DiagramFinder class
Package: slreportgen.finder

Create finder for diagrams

Description
Finds Simulink diagrams and Stateflow charts.

Construction
finder = DiagramFinder(container) creates a finder that finds by default all uncommented
Simulink block diagrams and Stateflow chart diagrams in the specified container. To constrain the
search to include specific types of diagrams, use the properties of this finder.

Note This finder can operate in either find or iterator mode. In find mode, use its find method to
return the results of a search as an array of results. In iterator mode, use its hasNext and next
methods to return the results of a search one-by-one. When searching in models that have many
model references, use iterator mode. Iterator mode closes a model after compiling and searching it,
whereas find mode keeps all the models that it searches open. Having many open models can
consume all system memory and slow report generation. Iterator mode is slower than find mode, so
use find mode to search models that reference few or no other models.

finder = DiagramFinder(Name,Value) sets properties using name-value pairs. You can specify
multiple name-value pair arguments in any order. Enclose each property name in single quotes.

Input Arguments

Container — Model container to search
path | handle | chart ID | chart object

See Container property.

Properties
Container — Model container to search
path | handle | chart ID | chart object

Model container in which to search, specified as one of these values:

• Handle of a Simulink model, subsystem, or model block
• Path to a Simulink model, subsystem, or model block
• Handle of a Stateflow chart block
• Path to a Stateflow chart block
• Stateflow chart ID
• Stateflow chart object

7 Classes

7-182

SearchDepth — Depth of system diagram search
inf (default) | positive integer

Depth of system diagram search, specified as inf or a positive integer. SearchDepth specifies how
many levels deep to search a diagram container for diagrams. To search all levels, use inf.

IncludeMaskedSubsystems — Search masked subsystems
true (default) | false

Choice to search masked subsystems, specified as a logical. If this property is true, the finder
searches masked Subsystem blocks in the diagram container. It searches to the specified
SearchDepth and includes the diagrams it finds in the search results.

IncludeReferencedModels — Search model references
true (default) | false

Choice to search referenced models, specified as a logical. If this property is true, the finder
searches models referenced in the diagram container. It searches to the specified SearchDepth and
includes the diagrams it finds in the search results.

IncludeSimulinkLibraryLinks — Search Simulink library links
true (default) | false

Choice to search Simulink library links, specified as a logical. If both this property and
IncludeMaskedSubsystems are true, the finder searches links in the diagram container to both
Subsystem and masked Subsystem blocks in Simulink libraries. It searches to the specified
SearchDepth and includes the diagrams it finds in the search results. If this property is true, but
IncludeMaskedSubsystems is false, the finder searches only links to Subsystem blocks in
Simulink libraries.

IncludeUserLibraryLinks — Search user library links
true (default) | false

Choice to search user library links, specified as a logical. If this property is true and the
IncludeMaskedSubsystems property is true, the finder searches links in the diagram container to
Subsystem and masked Subsystem blocks in user libraries. It searches to the specified SearchDepth
and includes the diagrams it finds in the search results. If this property is true, but the
IncludeMaskedSubsystems property is false, the finder searches only links to Subsystem blocks
in user libraries.

IncludeCommented — Include commented-out diagrams
false (default) | true

Whether to include commented-out diagrams in the search results, specified as a logical. If false,
commented-out diagrams are excluded from the search results.

IncludeVariants — Include diagram variants
string | character vector

Variants to search for diagrams, specified as a string or character vector. The default value is
Active. Valid values are:

• All — All variants
• Active — Only active variants

 slreportgen.finder.DiagramFinder class

7-183

• ActivePlusCode — All active variants and code variants

Properties — Properties of objects to find
cell array

Properties of objects to find, specified as a cell array of name-value pairs. The finder returns only
objects that have the specified properties with the specified values.
Example: finder.Properties = {'Gain','5'}

AutoCloseModel — Whether to close models
true (default) | false

Whether to close models, specified as true or false. If true, the next method of the finder closes
the currently open model before moving to the next model to search. Closing models prevents
excessive consumption of memory when searching a model that references many models.

Note The find method of the finder ignores this property and leaves all referenced models open.
For this reason, you should not use the find method to search models with many model references.

Methods
results = find(finder) finds diagrams in the specified container. The finder is an
slreportgen.finder.DiagramFinder object. results is an array of
slreportgen.finder.DiagramResult objects, each of which contains a diagram found by this
method. Adding this array to a report or a reporter adds images of all the diagrams that it contains.
The reports to which you can add the results of this method are reports of type
slreportgen.report.Report or another reporter object, such as an
slreportgen.report.Chapter reporter.

Note The find method opens and compiles a top-level model and all models it references. This
method leaves all the models open at the conclusion of a search, which can slow reporting on models
that contain many model references. To avoid this slowdown, use the hasNext and next methods to
search such a model.

tf = hasNext(finder) determines if the container that the finder searches contains at least one
diagram. If the container has at least one diagram, the hasNext method queues that diagram as the
next diagram that the next method will return. The hasNext method then returns true. Use the
next method to obtain that diagram. On subsequent calls, the hasNext method determines if the
container has a diagram that the next has not yet retrieved. It queues the diagram for the next
method to retrieve and returns true. If there are no more diagrams to be retrieved, this method
returns false. To search a container progressively for diagrams, use the hasNext method with the
next method in a while loop.

Note If the current result is the last result in the search queue for the current model and the
AutoCloseModel property is true, this method closes the current model before it opens the next
model. Although this increases search time, it reduces memory consumption when searching a top
model that references many other models. If your model does not reference many other models, to
speed up the search, set the AutoCloseModel property to false or use the find method.

7 Classes

7-184

result = next(finder) returns the next search result in the result queue that the hasNext
method created. The search result contains the resulting diagram. Adding this result object to a
report or reporter adds a Diagram reporter for the diagram.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Find All Block Diagrams and Stateflow Charts

Create a report that includes an image of all diagrams in the slrgex_sf_car model. Although the
model used in this example does not contain model references, the example uses iterator mode to
illustrate its syntax.

import mlreportgen.report.*
import slreportgen.report.*
import slreportgen.finder.*

model_name = 'slrgex_sf_car';
load_system(model_name);
rpt = slreportgen.report.Report('output','pdf');
add(rpt, TitlePage('Title', sprintf('%s Systems',...
 model_name)));

finder = DiagramFinder(model_name);
while hasNext(finder)
 add(rpt,next(finder));
end

close(rpt);
close_system(model_name);
rptview(rpt);

Find All Diagrams in a Subsystem

Open the slrgex_sf_car model and find all the diagrams in its Engine subsystem. Use either the
path to the subsystem or its handle. You can then include the results in your report.

slrgex_sf_car

% Use path
enginePath = "slrgex_sf_car/Engine";
finder = slreportgen.finder.DiagramFinder(enginePath);
results = find(finder);

% or use handle
engineHandle = get_param("slrgex_sf_car/Engine","Handle");
finder = slreportgen.finder.DiagramFinder(engineHandle);
results_enginehandle = find(finder);

 slreportgen.finder.DiagramFinder class

7-185

Find Diagram Elements with Specific Property Value

To find elements with specific property values, use an object of the
slreportgen.finder.DiagramElementFinder class. Open the f14 model and find all Gain
blocks with a value of Zw.

model = 'f14';
load_system(model);
finder = slreportgen.finder.DiagramElementFinder(model)
finder.Properties = {'Gain','Zw'};
results = find(finder);

See Also
slreportgen.report.Report | slreportgen.finder.DiagramElementFinder |
slreportgen.finder.SystemDiagramFinder | slreportgen.finder.ChartDiagramFinder |
slreportgen.finder.StateflowDiagramElementFinder | slreportgen.report.Diagram |
slreportgen.finder.DiagramResult

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2017b

7 Classes

7-186

slreportgen.finder.DiagramElementResult class
Package: slreportgen.finder

Create diagram element finder result object

Description
Diagram element search result object for an element in a Simulink or Stateflow diagram.

Construction
result = DiagramElementResult(elem) creates a search result object for a diagram element.
The result object contains the specified Simulink or Stateflow diagram element.

Note The find methods of diagram element finders create and return instances of this
slreportgen.finder.DiagramElementResult object. You do not need to create instances
yourself.

finder = DiagramElementResult(Name,Value) sets properties using name-value pairs. You can
specify multiple name-value pair arguments in any order. Enclose each property name in single
quotes.

Input Arguments

elem — Simulink or Stateflow diagram element
diagram element path | diagram element handle

Simulink or Stateflow diagram element, specified as a path or handle to the element.

Properties
Object — Diagram element handle
handle

This read-only property contains a handle to the diagram element returned in this result.

Name — Name of diagram element
string

This read-only property specifies the name of the diagram element returned in this result.

Type — Diagram element type
string

This read-only property specifies the type of the diagram element returned in this result.
Example: "Simulink.BlockDiagram"

DiagramPath — Path of diagram that contains element
string

 slreportgen.finder.DiagramElementResult class

7-187

This read-only property returns the path of the diagram that contains the element returned in this
result.

Tag — Additional information
string | character vector | object | ...

Additional information to add to this result. You can set it to any type of value.

Methods

getDiagramReporter Returns Diagram reporter for diagram element result
getReporter Get diagram element reporter

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Add Stateflow Function Diagram to Report

The slrgex_sf_car model uses a Simulink Function, which is a function that uses a Simulink
subsystem to compute its outputs from its inputs. This example finds the diagrams in the model and
for each diagram uses an slreportgen.DiagramElementFinder object to find the Simulink
Function subsystems. For each slreportgen.DiagramElementResult object returned by the
finder, the example uses the Name property value as a section title and calls the
getDiagramReporter method to return the subsystem diagram to add to the section.

import slreportgen.report.*
import slreportgen.finder.*
import mlreportgen.report.*

model = "slrgex_sf_car";
load_system(model);

rpt = slreportgen.report.Report("output","pdf");
chapter = Chapter();
chapter.Title = "Diagram Element Result Example";

% Find all diagrams in the model
diagFinder = DiagramFinder(model);
diagrams = find(diagFinder);
for diag = diagrams
 % Find all Simulink Function subsystems in the current diagram
 elemFinder = DiagramElementFinder(diag);
 elemFinder.Types = "slfunction";
 elems = find(elemFinder);
 for elem = elems
 section = Section("Title", ...
 mlreportgen.utils.normalizeString(elem.Name));
 % Get the diagram reporter from the result and add it to the section
 rptr = getDiagramReporter(elem);
 if ~isempty(rptr)
 add(section,rptr)
 end
 add(section,elem);
 add(chapter,section);
 end

7 Classes

7-188

end

add(rpt,chapter);
close(rpt);
rptview(rpt);

See Also
slreportgen.report.Report | slreportgen.finder.DiagramElementFinder

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2017b

 slreportgen.finder.DiagramElementResult class

7-189

slreportgen.finder.DiagramResult class
Package: slreportgen.finder

Create diagram result finder object

Description
Diagram search result object for a Simulink or Stateflow diagram.

finder = DiagramResult(Name,Value) sets properties using name-value pairs. You can specify
multiple name-value pair arguments in any order. Enclose each property name in single quotes.

Construction
result = DiagramResult(diagram) creates a search result object for a Simulink or Stateflow
diagram. The result object contains the specified Simulink or Stateflow diagram. Diagram finder
find methods create and return instances of this object for each diagram that they find. You do not
need to create this object yourself.

Input Arguments

diagram — Simulink or Stateflow diagram
diagram path | diagram handle

Simulink or Stateflow diagram, specified by its path or its handle.

Properties
Object — Diagram handle
handle

This read-only property contains a handle to the diagram returned by this result.

Name — Name of model or block
string

This read-only property specifies the name of the model or block that contains the diagram returned
by this result.

Type — Diagram type
string

This read-only property specifies the type of the diagram returned by this result.
Example: "Simulink.BlockDiagram"

Path — Path to diagram
string

This read-only property returns the path of the container of the diagram returned by this result. An
example of a container of a diagram is a subsystem block.

7 Classes

7-190

Example: "slrgex_sf_car/Engine"

Tag — Additional information
string | character vector | object | ...

Additional information to add to this result. You can set it to any type of value.

Methods
getReporter Get diagram reporter

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also
slreportgen.finder.ChartDiagramFinder | slreportgen.finder.DiagramFinder |
slreportgen.report.Diagram | slreportgen.report.Report

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2017b

 slreportgen.finder.DiagramResult class

7-191

slreportgen.finder.ModelVariableFinder class
Package: slreportgen.finder slreportgen.finder slreportgen.finder
slreportgen.finder
Superclasses: mlreportgen.finder.Finder

Finds variables used by a Simulink model

Description
Find variables used by a Simulink model.

The slreportgen.finder.ModelVariableFinder class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
Description

finder = slreportgen.finder.ModelVariableFinder(container) creates a finder that
finds variables used in the specified container, which can be a Simulink model or subsystem. See
the Container property. You can constrain the search by setting the properties of the finder. Use the
methods of the finder to perform the search.

Note This finder provides two ways to get search results:

1 To return the search results as an array, use the find method. Add the results directly to a
report or process the results in a for loop.

2 To iterate through the results one at a time, use the hasNext and next methods in a while loop.

Neither option has a performance advantage.

finder = slreportgen.finder.ModelVariableFinder(Name,Value) sets properties using
name-value pairs. You can specify multiple name-value pair arguments in any order. Enclose each
property name in single or double quotes.

Properties
Container — Model or subsystem to search
string scalar | character vector | handle

Model or subsystem to search, specified as a string scalar or character vector that contains the path
to the model or subsystem, or as a handle to the model or subsystem.

7 Classes

7-192

Regexp — Regular expression matching
"off" (default) | "on"

Regular expression matching, specified as "off" or "on". If Regexp is "off", regular expression
matching is not enabled. If Regexp is "on", regular expression matching is enabled for the values of
the Name, SourceType, and Users properties. For example, this code finds variables that start with
vehicle.

finder = slreportgen.finder.ModelVariableFinder('slrgex_sf_car');
finder.Regexp = "on";
finder.Name = "^vehicle";

See “Regular Expressions”.

SearchMethod — Compile status
"compiled" (default) | "cached"

Compile status, specified as one of the values in the table.

Value Description
"compiled" Get up-to-date results by compiling models before

the search. (default)
"cached" Get results more quickly by using data cached

during the previous compilation.

SearchReferencedModels — Whether to search referenced models
"on" (default) | "off"

Whether to search for variables in referenced models, specified as one of the values in the table.

Value Description
"on" Search for variables in referenced models.

(default)
"off" Do not search for variables in referenced models.

Name — Name of variable to search for
[] (default) | character vector | string scalar

Name of variable to search for, specified as a character vector or string scalar. If the Regexp property
is set to "on", the value of Name can be a regular expression. If the Name property is empty, the
finder does not search based on the variable name.
Example: "vehicledata"
Example: "^vehicle"

SourceType — Source of variable definitions
[] (default) | "base workspace" | "model workspace" | "mask workspace" | "data
dictionary"

Source of variable definitions, specified as one of these values:

 slreportgen.finder.ModelVariableFinder class

7-193

If you set SourceType, the finder returns variables only from the specified source. If the Regexp
property is set to "on", the value of SourceType can be a regular expression. If the SourceType
property is empty, the finder does not filter the search results by the source.
Example: finder.SourceType = "model workspace" returns all variables defined in the model
workspace.
Example: finder.SourceType = "(base|mask) workspace" returns all variables defined in the
base workspace or the mask workspace if the Regexp property is set to "On".
Example: finder.SourceType = "\w* workspace" returns all variables defined in the base,
mask, or model workspace if the Regexp property is set to "On".

Users — Names of blocks to search for variables
[] (default) | character vector | string scalar | array of character vectors | string array

Names of blocks to search for variables. Specify one block as a character vector or string scalar.
Specify multiple blocks as an array of character vectors or a string array. The finder returns variables
used by one or more of the specified blocks. If you do not set the Users property, the finder searches
the entire model or subsystem. If the Regexp property is set to true, you can set the Users property
to a regular expression.

For example, to find all variables in MyModel that are used by either the Gain1 block or the Gain2
block, you can specify both blocks in the Users property.

myFinder.Users = ["myModel/Gain1", "myModel/Gain2"];

Alternatively, you can use a regular expression that matches both block names.

myFinder.Regexp = "on";
myFinder.Users = "Gain(1|2)";

LookUnderMasks — Whether to search masked subsystems
"all" (default) | "none"

Whether to search for variables in masked subsystems, specified as one of the values in the table.

Value Description
"all" Search for variables in masked subsystems.

(default)
"none" Do not search for variables in masked

subsystems.

FollowLibraryLinks — Whether to follow library links
"on" (default) | "off"

Whether to follow library links when searching for variables, specified as one of the values in the
table.

Value Description
"on" Follow links into library blocks. Library links are

treated as subsystems. (default)
"off" Do not follow links into library blocks. Library

links are treated as blocks.

7 Classes

7-194

IncludeInactiveVariants — Whether to include variables of inactive variant systems
"off" (default) | "on"

Whether to include variables of inactive variant systems, specified as one of the values in the table.

Value Description
"off" Do not include variables used by inactive variant

systems. (default)
"on" Include variables used by inactive variant

systems. Variables in inactive variants are only
found if the Variant activation time
configuration parameter of the containing Variant
Subsystem or Variant Model block is set to code
compile or update diagram analyze all
choices. To include variables in Model blocks
that are inactive systems, the
SearchReferencedModels property of this
finder must also be set to "on".

Properties — Properties of Simulink.VariableUsage objects to find
{} (default) | cell array

Properties of Simulink.VariableUsage objects to find, specified as a cell array of name-value
pairs. The finder returns only variables whose associated Simulink.VariableUsage object has the
specified property values.
Example: finder.Properties = {'SourceType', 'base workspace'}

Methods
Public Methods

find results = find(finder) finds variables in a
model or subsystem according to the constraints
specified by the finder. The variables are returned
as an array of
slreportgen.finder.ModelVariableResult
objects.

Add all of the results directly to a report or
process the results in a for loop. In the loop, you
can customize the content and formatting for a
variable by setting properties of the reporter for
the variable. Get the reporter by using the
getReporter method of the
slreportgen.finder.ModelVariableResult
object that contains the variable.

 slreportgen.finder.ModelVariableFinder class

7-195

hasNext tf = hasNext(finder) returns true if a
variable returned by the finder is available for the
next method to retrieve. If the finder does not
return any variables, or if all variables have been
retrieved, hasNext returns false. Use hasNext
and next to iterate through the variables in a
while loop. In the loop, you can customize the
content and formatting for a variable by setting
properties of the reporter for the variable. Get
the reporter by using the getReporter method
of the
slreportgen.finder.ModelVariableResult
object.

next result = next(finder) returns the next
variable as an
slreportgen.finder.ModelVariableResult
object. Use hasNext and next to iterate through
found variables in a while-loop. In the loop, you
can customize the content and formatting for a
variable by setting properties of the reporter for
the variable. Get the reporter by using the
getReporter method of the
slreportgen.finder.ModelVariableResult
object.

Examples

Add Model Variables to a Report

Find the variables in a model and add the results directly to a report. Specify that the finder includes
variables in masked systems.

% Create a Simulink Report
rpt = slreportgen.report.Report("MyReport","pdf");

% Create a Chapter
chapter = mlreportgen.report.Chapter();
chapter.Title = "Model Variable Finder Example";

% Load the model
model_name = "slrgex_sf_car";
load_system(model_name)

% Create a variable finder and set its properties
finder = slreportgen.finder.ModelVariableFinder(model_name);
finder.LookUnderMasks = "all";

% Find variables used by the model
results = find(finder);

% Add the results to the chapter
add(chapter,results);

7 Classes

7-196

% Add chapter to the report
add(rpt,chapter);

% Close the report and open the viewer
close(rpt);
rptview(rpt);

Customize the Formatting of Model Variables in a Report

Customize the formatting of model variables in a report by iterating through the search results and
setting properties of the model variable reporter for each result.

% Create a Report
rpt = slreportgen.report.Report("MyReport","pdf");

% Create a Chapter
chapter = mlreportgen.report.Chapter();
chapter.Title = "Model Variable Reporter Example";

% Load the model
model_name = "slrgex_sf_car";
load_system(model_name);

% Find the variables in the model
finder = slreportgen.finder.ModelVariableFinder(model_name);

while hasNext(finder)
 result = next(finder);

 % Get the ModelVariable reporter for the result
 % Customize the formatting of numbers
 reporter = getReporter(result);
 reporter.NumericFormat = "%.4f";

 % Add the reporter to the chapter
 add(chapter,reporter);
end
% Add chapter to the report
add(rpt,chapter);

% Close the report and open the viewer
close(rpt);
rptview(rpt);

See Also
slreportgen.report.BusObject | Simulink.findVars | Simulink.VariableUsage |
slreportgen.finder.ModelVariableResult | slreportgen.report.ModelVariable

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2019b

 slreportgen.finder.ModelVariableFinder class

7-197

slreportgen.finder.ModelVariableResult class
Package: slreportgen.finder

Model variable search result object

Description
Model variable search result object for a variable used in a Simulink model or subsystem.

The slreportgen.finder.ModelVariableResult class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
You do not create an slreportgen.finder.ModelVariableResult object explicitly. The
slreportgen.finder.ModelVariableFinder find or next methods create an
slreportgen.finder.ModelVariableResult object for each variable that is found.

Properties
Object — Simulink.VariableUsage object
Simulink.VariableUsage object

Simulink.VariableUsage object for the variable represented by this result. This property is read-
only.

Name — Name of variable
character vector

Name of the variable represented by this result, specified as a character vector. This property is read-
only.

Source — Source of variable definition
character vector

Source of the variable definition, specified as a character vector. This property is read-only. This table
shows example values.

Value Description
'base workspace' MATLAB base workspace
'MyModel' Model workspace for MyModel
'MyModel/Mask1' Mask workspace for a masked block

7 Classes

7-198

Value Description
'my_data_dictionary.sldd' The data dictionary

my_data_dictionary.sldd.

SourceType — Type of defining workspace
character vector

Type of the workspace that defines the variable, specified as one of these character vectors:

This property is read-only.

Users — Blocks that use the variable
cell array

Blocks that use the variable, specified as a cell array of character vectors. This property is read-only.

ModelBlockPath — Path of Model block that set the variable value
character vector

Path of the Model block that set the variable value, specified as a character vector. This property is
read-only.

Suppose that a referenced model uses a model argument to set a block parameter value. If a model
has multiple instances of the referenced model, the model variable finder returns multiple instances
of the variable that is associated with the model argument. The ModelBlockPath property uniquely
identifies the instance of the variable by providing the path to the Model block that set its value. If a
variable is not associated with a model argument in a referenced model, the ModelBlockPath is
empty. For more information about referenced models and instance-specific parameters, see
“Parameterize Instances of a Reusable Referenced Model”.

Tag — Additional information
string | character vector | number | ...

Additional information to save with this result. You can set it to any type of value.

Methods
Public Methods
getReporter Get reporter for model variable search result
getVariableID Get unique ID of model variable
getVariableValue Get value of variable from model variable search result

Examples

Customize the Formatting of Model Variables in a Report

Customize the formatting of model variables in a report by iterating through the search results and
setting properties of the model variable reporter for each result.

% Create a Report
rpt = slreportgen.report.Report("MyReport","pdf");

 slreportgen.finder.ModelVariableResult class

7-199

% Create a Chapter
chapter = mlreportgen.report.Chapter();
chapter.Title = "Model Variable Reporter Example";

% Load the model
model_name = "slrgex_sf_car";
load_system(model_name);

% Find the variables in the model
finder = slreportgen.finder.ModelVariableFinder(model_name);

while hasNext(finder)
 result = next(finder);

 % Get the ModelVariable reporter for the result
 % Customize the formatting of numbers
 reporter = getReporter(result);
 reporter.NumericFormat = "%.4f";

 % Add the reporter to the chapter
 add(chapter,reporter);
end
% Add chapter to the report
add(rpt,chapter);

% Close the report and open the viewer
close(rpt);
rptview(rpt);

See Also
slreportgen.finder.ModelVariableFinder | slreportgen.report.ModelVariable |
Simulink.VariableUsage

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2019b

7 Classes

7-200

slreportgen.finder.SignalFinder class
Package: slreportgen.finder slreportgen.finder slreportgen.finder
slreportgen.finder

Find signals used by model or block

Description
Use an object of the slreportgen.finder.SignalFinder class to find signals used by a model or
block.

Signals are the outputs of dynamic systems that are represented by blocks in a Simulink diagram and
by the diagram itself. To find unique signals in a system, the signal finder searches for block output
ports. When a block or subsystem is searched, the results represent the output ports of the block or
subsystem, as well as the output ports of the blocks whose output signals feed into the block or
subsystem. When a model is searched, the results represent the output ports of the model Inport
blocks and the block output ports that are connected to the model Outport blocks.

The slreportgen.finder.SignalFinder class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
Description

finder = slreportgen.finder.SignalFinder(container) creates a SignalFinder object
and sets the “Container” on page 7-0 property to the model or block specified by container. Use
the SignalFinder properties to:

• Constrain the search to the types of signals found, such as input, output, or internal signals.
• Specify the number of levels to search in a model.

Use the SignalFinder methods to perform the search.

Note This finder provides two ways to get search results:

1 To return the search results as an array, use the find method. Add the results directly to a
report or process the results in a for loop.

2 To iterate through the results one at a time, use the hasNext and next methods in a while loop.

Neither option has a performance advantage.

 slreportgen.finder.SignalFinder class

7-201

finder = slreportgen.finder.SignalFinder(Name,Value) sets the SignalFinder object
properties using name-value pairs. You can specify multiple name-value pair arguments in any order.
Enclose each property name in single or double quotes.

Properties
Container — Model or block to search for signals
string scalar | character vector | handle | slreportgen.finder.DiagramResult object |
slreportgen.finder.BlockResult object

Model or block to search for signals, specified as one of the following values:

IncludeInputSignals — Whether to find signals used as input to model or block
true (default) | false

Whether to find the signals used as input data to the container model or block, specified as true or
false. If Container is a model, the input signal results represent the output ports of any Inport
blocks in the top level of the model. If Container is a block, the input signal results represent the
output ports of the blocks that feed into the container block input ports.

IncludeOutputSignals — Whether to find signals output by model or block
true (default) | false

Whether to find signals output by the container model or block, specified as true or false. If
Container is a model, the output signal results represent the output ports of blocks that feed into
Outport blocks in the top level of the model. If Container is a block, the output signal results
represent the output ports of the block.

IncludeControlSignals — Whether to find block control signals
false (default) | true

Whether to find block control signals, specified as true or false. This property applies only when
Container is a block, such as a Subsystem or Model block, that has a control port. Control signals
control the execution of a block. Control signal results represent the output ports of blocks that feed
into a block control port, such as the enable, trigger, or reset port. If Container is a model, any
signals that control the execution of blocks in the model are reported as internal signals.

IncludeInternalSignals — Whether to find internal signals
false (default) | true

Whether to find internal signals, specified as true or false. Internal signals are not used as input,
output, or control signals for a model or subsystem. This property applies only if the Container is a
model or subsystem. Internal signal results represent the output ports of all blocks in the system,
except for the output ports of Inport blocks and output ports that feed into Outport blocks.

IncludeVirtualBlockSignals — Whether to find signals output by virtual blocks
true (default) | false

Whether to find signals output by virtual blocks, specified as true or false.

If this property is true, signal results can represent ports of virtual blocks, such as virtual Subsystem
blocks.

7 Classes

7-202

If this property is false, signal results represent only output ports of nonvirtual blocks. Input and
control signals are traced to the nonvirtual blocks that output the signal. If the model or block
specified by the Container property is virtual, output ports of the model or block are traced to their
nonvirtual sources.

IncludeUnnamedSignals — Whether to find signals without a name
true (default) | false

Whether to find signals without a name, specified as true or false.

SearchDepth — Number of levels to search for internal signals
1 (default) | positive integer | inf

Number of levels to search for internal signals in the model or subsystem, specified as one of these
values:

See IncludeInternalSignals.

Properties — Properties of output ports to find
{} (default) | cell array

Properties of output ports to find, specified as a cell array of name-value pairs. The finder returns
only output ports that have the specified properties with the specified values.
Example: {'CompiledPortDataType','int8'}

Methods
Public Methods

find results = find(finder) finds signals in a
model or subsystem according to the constraints
specified by the finder. The variables are returned
as an array of
slreportgen.finder.SignalResult objects.

Append all of the results directly to a report or
process the results in a for loop. In the loop, you
can customize the content and formatting for a
signal by setting the properties of the signal
reporter. Get the reporter by using the
getReporter method of the
slreportgen.finder.SignalResult object
that represents the signal.

 slreportgen.finder.SignalFinder class

7-203

hasNext tf = hasNext(finder) returns true if a
signal returned by the finder is available for the
next method to retrieve. If the finder does not
return any signals, or if all signals have been
retrieved, hasNext returns false. Use hasNext
and next to iterate through the signals in a
while loop. In the loop, you can customize the
content and formatting for a signal by setting
properties of the signal reporter. Get the reporter
by using the getReporter method of the
slreportgen.finder.SignalResult object.

next result = next(finder) returns the next
signal as an
slreportgen.finder.SignalResult object.
Use hasNext and next to iterate through found
signals in a while loop. In the loop, you can
customize the content and formatting for a signal
by setting the properties of the signal reporter.
Get the reporter by using the getReporter
method of the
slreportgen.finder.SignalResult object.

Examples

Find and Report Signals in a Model

This example creates a report that includes information about signals in a model by using an
slreportgen.finder.SignalFinder object. The example sets the finder properties so that
signals without names are excluded and internal signals are included.

Import the MATLAB Report API and Simulink Finder API packages so that you do not have to use
long, fully qualified class names.

import mlreportgen.report.*
import slreportgen.finder.*

Create a Simulink report.

rpt = slreportgen.report.Report("MyReport","pdf");

Create a chapter for the signal information.

chapter = Chapter();
chapter.Title = "Named Signals";

Load a model.

model_name = "slrgex_vdp";
load_system(model_name);

Create a signal finder and set the properties to exclude signals without names and include internal
signals.

7 Classes

7-204

finder = SignalFinder(model_name);
finder.IncludeUnnamedSignals = false;
finder.IncludeInternalSignals = true;

Find the signals and add the results to the chapter.

results = find(finder);
append(chapter,results);

Add the chapter to the report.

append(rpt,chapter);

Close and view the report.

close(rpt);
rptview(rpt);

See Also
slreportgen.report.BusObject | slreportgen.finder.DiagramResult |
slreportgen.finder.BlockResult | slreportgen.finder.SignalResult |
slreportgen.report.Signal

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”
“Signal Basics”

Introduced in R2021a

 slreportgen.finder.SignalFinder class

7-205

slreportgen.finder.SignalResult class
Package: slreportgen.finder slreportgen.finder slreportgen.finder
slreportgen.finder

Signal search result object

Description
An object of the slreportgen.finder.SignalResult class represents a result of a search for the
signals used by a model or block. You can append a SignalResult object directly to a report.
Alternatively, you can use the getReporter method to access the slreportgen.report.Signal
reporter for the result and then customize the reporter and append it to the report.

The slreportgen.finder.SignalResult class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
You do not create an slreportgen.finder.SignalResult object explicitly. The
slreportgen.finder.SignalFinder find and next methods create an
slreportgen.finder.SignalResult object for each signal that is found.

Properties
Object — Block output port
handle

Block output port that represents the found signal, specified as a handle. This property is read-only.

Name — Name of found signal
string scalar

Name of the found signal, specified as a string scalar. This property is read-only.

Source block — Name of source block of signal
string scalar

Name of the block that is the source of the found signal, specified as a string scalar. This property is
read-only.

SourcePortNumber — Number of output port
double

Number of the output port that represents the found signal, specified as an integer. This property is
read-only.

7 Classes

7-206

RelatedObject — Name of model or block that uses this signal
string scalar

Name of model or block that uses this signal, specified as a string scalar. The value of this property
corresponds to the value of the Container property of the slreportgen.finder.SignalFinder
object used to find this signal. This property is read-only.

Relationship — Relationship of signal to container model or block
"Input" | "Output" | "Internal" | "Control" | "State"

Relationship of the found signal to the container model or block, specified as "Input", "Output",
"Internal", "Control", or "State". The container model or block is specified by the
RelatedObject property.

Tag — Additional information
[] (default) | string scalar | character vector | number | ...

Additional information to save with this result, specified as any value.

Methods
Public Methods

getReporter reporter = getReporter(signalResult)
returns the slreportgen.report.Signal
reporter object for the signal represented by
signalResult. Use the reporter to customize
the information reported and the formatting of
the information.

getDestinationPorts ports = getDestinationPorts(
signalResult) returns the handles of the input
or control ports that are connected to the signal
represented by signalResult. The ports
returned are the graphical destinations of the
signal. They can belong to both virtual and
nonvirtual blocks.

getVirtualDestinationPorts ports = getVirtualDestinationPorts(
signalResult) returns the handles of the input
or control ports that are connected to the signal
represented by signalResult. The ports
returned are the nonvirtual destinations of the
signal. They belong to only nonvirtual blocks. For
example, if a signal output from a block in
exampleModel connects to a block, Gain1, that
is in a virtual subsystem, Sub1, this method
returns the input port to exampleModel/Sub1/
Gain1.

Examples

 slreportgen.finder.SignalResult class

7-207

Customize Reporter for Signal Result

Use the getReporter method of an slreportgen.finder.SignalResult object to access the
signal reporter for the result. Then, customize the reporter by setting its properties.

Import the MATLAB and Simulink Report API packages so that you do not have to use long, fully
qualified class names.

import mlreportgen.report.*
import slreportgen.report.*

Create a Simulink report.

rpt = slreportgen.report.Report("MySignalReport","pdf");

Create a chapter for the signal information.

chapter = mlreportgen.report.Chapter();
chapter.Title = "Signals";

Load a model.

model_name = "slrgex_vdp";
load_system(model_name);

Create a signal finder.

finder = slreportgen.finder.SignalFinder(model_name);

Find the signals. For each found signal, get the reporter, specify that you want to report empty
property values, and add the reporter to the chapter.

while hasNext(finder)
 result = next(finder);

 reporter = getReporter(result);
 reporter.ShowEmptyValues = true;

 add(chapter,reporter);
end

Add the chapter to the report.

add(rpt,chapter);

Close and view the report.

close(rpt);
rptview(rpt);

See Also
slreportgen.finder.SignalFinder | slreportgen.report.Signal

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

7 Classes

7-208

“Signal Basics”

Introduced in R2021a

 slreportgen.finder.SignalResult class

7-209

slreportgen.finder.StateFinder class
Package: slreportgen.finder

Find Stateflow states

Description
Finds Stateflow states.

Construction
finder = StateFinder(diagram) creates a finder that finds by default all uncommented
Stateflow states in the specified chart diagram. To constrain the search to specific types of chart
diagrams, use the properties of this finder.

Note This finder provides two ways to get search results:

1 To return the search results as an array, use the find method. Add the results directly to a
report or process the results in a for loop.

2 To iterate through the results one at a time, use the hasNext and next methods in a while loop.

Neither option has a performance advantage.

finder = StateFinder(Name,Value) sets properties using name-value pairs. You can specify
multiple name-value pair arguments in any order. Enclose each property name in single quotes.

Input Arguments

diagram — Diagram to search
path | handle | chart ID | chart object

See Container property.

Properties
Container — Chart diagram to search
path | handle | chart ID | chart object

Chart diagram in which to search, specified as one of these values:

• Handle to a Stateflow chart block
• Path to a Stateflow chart block
• Stateflow chart ID
• Stateflow chart object

IncludeCommented — Include commented-out states
false (default) | true

7 Classes

7-210

Choice to include commented-out states in the search results, specified as a logical. If false,
commented-out states are excluded from the search results.

Properties — Properties of states to find
cell array

Properties of states to find, specified as a cell array of name-value pairs. The finder returns only
states that have the specified properties with the specified values.
Example: finder.Properties = {'ArrowSize','5'}

Methods
results = find(finder) finds states in the chart diagram specified by the finder. This method
returns the states it finds wrapped in result objects of type
slreportgen.finder.DiagramElementResult. To add tables of the state properties, add the
results objects directly to the report or add them to a reporter that you then add to a report. The
reports to which you can add the results of this method must be reports of type
slreportgen.report.Report.

tf = hasNext(finder) determines if the chart diagram that the finder searches contains at least
one state. If the chart diagram has at least one state, the hasNext method queues that state as the
next state that the next method will return. The hasNext method then returns true. Use the next
method to obtain that state. On subsequent calls, the hasNext method determines if the chart
diagram has a state that the next method has not yet retrieved. It queues the state for the next
method to retrieve and returns true. If there are no more states to be retrieved, this method returns
false. To search a chart diagram progressively for states, use the hasNext method with the next
method in a while loop.

result = next(finder) returns the next search result in the result queue that the hasNext
method created. This method returns the state that it finds wrapped in a result object of type
slreportgen.finder.DiagramElementResult. To add tables of the state properties, add the
results objects directly to the report or add them to a reporter that you then add to a report. The
reports to which you can add the results of this method must be of type
slreportgen.report.Report.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Find Stateflow States

Create a report that includes properties of all the Stateflow states in the shift_logic chart of the
slrgex_sf_car model.

import mlreportgen.report.*
import slreportgen.report.*
import slreportgen.finder.*

model_name = "slrgex_sf_car";
load_system(model_name);

 slreportgen.finder.StateFinder class

7-211

rpt = slreportgen.report.Report("output","pdf");
open(rpt)

add(rpt, TitlePage("Title",...
 sprintf('States in %s Model',model_name)));
add(rpt, TableOfContents);

chartFinder = ChartDiagramFinder(model_name);
charts = find(chartFinder);
while hasNext(chartFinder)
 diagram = next(chartFinder);
 stFinder = StateFinder(diagram.Object);
 states = find(stFinder);
 if ~isempty(states)
 chapter = Chapter("Title",diagram.Name);
 add(chapter,diagram)
 for state = states
 sect = Section("Title","States");
 add(sect,states)
 end
 add(chapter,sect)
 add(rpt,chapter)
 end
end

close(rpt)
close_system(model_name)
rptview(rpt)

See Also
slreportgen.report.Report | slreportgen.finder.DiagramElementFinder |
slreportgen.finder.ChartDiagramFinder |
slreportgen.finder.StateflowDiagramElementFinder |
slreportgen.report.StateflowObjectProperties |
slreportgen.finder.DiagramElementResult

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2017b

7 Classes

7-212

slreportgen.finder.StateflowDiagramElementFinde
r class
Package: slreportgen.finder

Find Stateflow diagram elements

Description
StateflowDiagramElementFinder creates a finder object that finds elements in a Stateflow chart
diagram.

Construction
finder = StateflowDiagramElementFinder(diagram) creates a finder that finds elements of a
Stateflow chart diagram. By default this finder finds states, transitions, truth tables, and other
elements in the specified Stateflow chart diagram. Use the properties of the finder to constrain the
search to specific types of elements.

Note This finder provides two ways to get search results:

1 To return the search results as an array, use the find method. Add the results directly to a
report or process the results in a for loop.

2 To iterate through the results one at a time, use the hasNext and next methods in a while loop.

Neither option has a performance advantage.

finder = StateflowDiagramElementFinder(Name,Value) sets properties using name-value
pairs. You can specify multiple name-value pair arguments in any order. Enclose each property name
in single quotes.

Input Arguments

diagram — Chart Diagram to search
path | handle | chart ID | chart object

See Container property.

Properties
Container — Chart diagram to search
path | handle | chart ID | chart object

Chart diagram in which to search, specified as one of these values:

• Handle to a Stateflow chart block
• Path to a Stateflow chart block

 slreportgen.finder.StateflowDiagramElementFinder class

7-213

• Stateflow chart ID
• Stateflow chart object

Types — Types of diagram elements to find
string | character array | array of strings | cell array of character arrays

Types of Stateflow diagram elements to find, specified as a string, character array, array of strings, or
a cell array of character arrays. If the type is an array, it specifies a set of element types. The default
is All or all, which finds all elements in all diagrams. Use one of these values to constrain the
search to specific diagram element types. You can use either the fully qualified name or the short
name.

Fully Qualified Name Short Name
All all
Stateflow.Annotation sf_annotation
Stateflow.Box box
Stateflow.EMFunction emfunction
Stateflow.Function function
Stateflow.Junction junction
Stateflow.Port port
Stateflow.SLFunction slfunction
Stateflow.State state
Stateflow.Transition transition
Stateflow.TruthTable truthtable

IncludeCommented — Include commented-out chart elements
false (default) | true

Whether to include commented-out chart elements in the search results, specified as a logical. If
false, commented-out elements are excluded from the search results.

Properties — Properties of elements to find
cell array

Properties of objects to find, specified as a cell array of name-value pairs. The finder returns only
elements that have the specified properties with the specified values.
Example: finder.Properties = {'ArrowSize','5'}

Methods
results = find(finder) finds Stateflow chart diagram elements in the diagram specified by the
finder. This method returns the chart diagram elements it finds wrapped in result objects of type
slreportgen.finder.DiagramElementResult. To add tables of the chart diagram element
properties, add the results objects directly to the report or add them to a reporter that you then add
to a report. The reports to which you can add the results of this method must be reports of type
slreportgen.report.Report.

tf = hasNext(finder) determines if the chart diagram that the finder searches contains at least
one element. If the chart diagram has at least one element, the hasNext method queues that element

7 Classes

7-214

as the next element that the next method will return. The hasNext method then returns true. Use
the next method to obtain that element. On subsequent calls, the hasNext method determines if the
chart diagram has an element that the next method has not yet retrieved. It queues the element for
the next method to retrieve and returns true. If there are no more elements to be retrieved, this
method returns false. To search a chart diagram progressively for elements, use the hasNext
method with the next method in a while loop.

result = next(finder) returns the next search result in the result queue that the hasNext
method created. This method returns the chart diagram element that it finds wrapped in a result
object of type slreportgen.finder.DiagramElementResult. To add tables of the chart diagram
element properties, add the results objects directly to the report or add them to a reporter that you
then add to a report. The reports to which you can add the results of this method must be of type
slreportgen.report.Report.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Find Stateflow States and Transitions

Create a report that finds Stateflow states and transitions in the
slrgex_fuelsys_fuel_rate_control model.

import mlreportgen.report.*
import slreportgen.report.*
import slreportgen.finder.*
model_name = "slrgex_fuelsys_fuel_rate_control";
load_system(model_name)

rpt = slreportgen.report.Report("output","pdf");
add(rpt, TitlePage("Title",sprintf("%s Charts",...
 model_name)))
add(rpt, TableOfContents)

chartFinder = ChartDiagramFinder(model_name);
while hasNext(chartFinder)
 chart = next(chartFinder);
 chapter = Chapter("Title",chart.Name);
 add(chapter, chart)
 sect = Section("Title","States");
 stateFinder = StateFinder(chart.Object);
 states = find(stateFinder);
 for state = states
 add(sect,state)
 end
 add(chapter,sect)

 sect = Section("Title","Transitions");
 transitionFinder = StateflowDiagramElementFinder...
 ("Container",chart.Object,"Types","transition");
 transitions = find(transitionFinder);
 for transition = transitions
 add(sect,transition)

 slreportgen.finder.StateflowDiagramElementFinder class

7-215

 end
 add(chapter,sect)
 add(rpt, chapter)
end

close(rpt);
close_system(model_name);
rptview(rpt)

See Also
slreportgen.report.Report | slreportgen.finder.ChartDiagramFinder |
slreportgen.finder.StateFinder | slreportgen.report.StateflowObjectProperties |
slreportgen.report.Diagram | slreportgen.finder.AnnotationFinder |
slreportgen.finder.DiagramElementResult

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2017b

7 Classes

7-216

slreportgen.finder.SystemDiagramFinder class
Package: slreportgen.finder

Create block diagram finder

Description
Create Simulink block diagram finder.

Construction
finder = SystemDiagramFinder(container) creates a finder that finds by default all
uncommented Simulink block diagrams in the specified container, which can be a Simulink model or
subsystem. To constrain the search to specific types of models or subsystems, use the properties of
the finder.

Note This finder can operate in either find or iterator mode. In find mode, use its find method to
return the results of a search as an array of results. In iterator mode, use its hasNext and next
methods to return the results of a search one-by-one. When searching in models that have many
model references, use iterator mode. Iterator mode closes a model after compiling and searching it,
whereas find mode keeps all the models that it searches open. Having many open models can
consume all system memory and slow report generation. Iterator mode is slower than find mode, so
use find mode to search models that reference few or no other models.

finder = SystemDiagramFinder(Name,Value) sets properties using name-value pairs. You can
specify multiple name-value pair arguments in any order. Enclose each property name in single
quotes.

Input Arguments

Container — Diagram container to search
path | handle | chart ID | chart object

See Container property.

Properties
Container — Diagram container to search
path | handle | chart ID | chart object

System container in which to search, specified as one of these values:

• Handle of a Simulink model or subsystem
• Path to a Simulink model or subsystem

SearchDepth — Depth of system diagram search
inf (default) | positive integer

 slreportgen.finder.SystemDiagramFinder class

7-217

Depth of system diagram search, specified as inf or a positive integer. SearchDepth specifies how
many levels deep to search a diagram container for diagrams. To search all levels, use inf.

IncludeMaskedSubsystems — Search masked subsystems
true (default) | false

Choice to search masked subsystems, specified as a logical. If this property is true, the finder
searches masked Subsystem blocks in the diagram container. It searches to the specified
SearchDepth and includes the diagrams it finds in the search results.

IncludeReferencedModels — Search model references
true (default) | false

Choice to search referenced models, specified as a logical. If this property is true, the finder
searches models referenced in the diagram container. It searches to the specified SearchDepth and
includes the diagrams it finds in the search results.

IncludeSimulinkLibraryLinks — Search Simulink library links
true (default) | false

Choice to search Simulink library links, specified as a logical. If both this property and
IncludeMaskedSubsystems are true, the finder searches links in the diagram container to both
Subsystem and masked Subsystem blocks in Simulink libraries. It searches to the specified
SearchDepth and includes the diagrams it finds in the search results. If this property is true, but
IncludeMaskedSubsystems is false, the finder searches only links to Subsystem blocks in
Simulink libraries.

IncludeUserLibraryLinks — Search user library links
true (default) | false

Choice to search user library links, specified as a logical. If this property is true and the
IncludeMaskedSubsystems property is true, the finder searches links in the diagram container to
Subsystem and masked Subsystem blocks in user libraries. It searches to the specified SearchDepth
and includes the diagrams it finds in the search results. If this property is true, but the
IncludeMaskedSubsystems property is false, the finder searches only links to Subsystem blocks
in user libraries.

IncludeRoot — Include root diagram
true (default) | false

Choice to include the root diagram in the search results, specified as a logical. If true and the top-
level diagram container is a model, the model block diagram is included in the search results.
Otherwise, the search results omit the model block diagram.

IncludeCommented — Include commented-out diagrams
false (default) | true

Choice to include commented-out diagrams in the search results, specified as a logical. If false,
commented-out diagrams are excluded from the search results.

IncludeVariants — Include diagram variants
string | character vector

Variants to search for diagrams, specified as a string or character vector. The default value is
Active. Valid values are:

7 Classes

7-218

• All — All variants
• Active — Only active variants
• ActivePlusCode — All active variants and code variants

Properties — Properties of objects to find
cell array

Properties of objects to find, specified as a cell array of name-value pairs. The finder returns only
objects that have the specified properties with the specified values.
Example: finder.Properties = {'Gain','5'}

AutoCloseModel — Whether to close models
true (default) | false

Whether to close models, specified as true or false. If true, the next method of the finder closes
the currently open model before moving to the next model to search. Closing models prevents
excessive consumption of memory when searching a model that references many models.

Note The find method of the finder ignores this property and leaves all referenced models open.
For this reason, you should not use the find method to search models with many model references.

Methods
results = find(finder) finds block diagrams in the container specified by the finder. The
finder is an slreportgen.finder.SystemDiagramFinder object. results is an array of
slreportgen.finder.DiagramResult objects, each of which contains a block diagram found by
this method. Adding the array to a report or reporter adds images of all the block diagrams it
contains. The reports to which you can add the results of this method are reports of type
slreportgen.report.Report or another reporter object, such as an
slreportgen.report.Chapter reporter.

tf = hasNext(finder) determines if the container that the finder searches contains at least one
diagram. If the container has at least one diagram, the hasNext method queues that diagram as the
next diagram that the next method will return. The hasNext method then returns true. Use the
next method to obtain that diagram. On subsequent calls, the hasNext method determines if the
container has a diagram that the next has not yet retrieved. It queues the diagram for the next
method to retrieve and returns true. If there are no more diagrams to be retrieved, this method
returns false. To search a container progressively for diagrams, use the hasNext method with the
next method in a while loop.

Note If the current result is the last result in the search queue for the current model and the
AutoCloseModel property is true, this method closes the current model before it opens the next
model. Although this increases search time, it reduces memory consumption when searching a top
model that references many other models. If your model does not reference many other models, to
speed up the search, set the AutoCloseModel property to false or use the find method.

result = next(finder) returns the next search result in the result queue that the hasNext
method created. The search result contains the resulting diagram. Adding this result object to a
report or reporter adds a Diagram reporter for the diagram.

 slreportgen.finder.SystemDiagramFinder class

7-219

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Find Block Diagrams

Create a report that finds block diagrams in the slrgex_sf_car model.

import mlreportgen.report.*
import slreportgen.report.*
import slreportgen.finder.*
model_name = 'slrgex_sf_car';
load_system(model_name);

rpt = slreportgen.report.Report('output','pdf');
add(rpt, TitlePage('Title', sprintf('%s Systems',...
 model_name)));
add(rpt,TableOfContents);
finder = SystemDiagramFinder(model_name);
results = find(finder);
for result = results
 chapter = Chapter('Title',result.Name);
 add(chapter,result);
 add(rpt,chapter);
end

close(rpt);
close_system(model_name);
rptview(rpt);

See Also
slreportgen.report.Report | slreportgen.finder.DiagramFinder |
slreportgen.finder.DiagramElementFinder |
slreportgen.report.SimulinkObjectProperties | slreportgen.report.Diagram |
slreportgen.finder.DiagramResult

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2017b

7 Classes

7-220

slreportgen.utils.HierarchyNumber class
Package: slreportgen.utils

Generate number that represents subsystem position in model hierarchy

Description
Use an object of the slreportgen.utils.HierarchyNumber class to generate numbers that
represent the positions of subsystems in a model hierarchy. You can use the numbers to label report
elements, such as section titles.

The slreportgen.utils.HierarchyNumber class is a handle class.

Class Attributes

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
Description

hierarchyNumberObj = slreportgen.utils.HierarchyNumber(source) creates a hierarchy
number object for the specified source and sets the Source property to source.

If you specify the source as a Simulink model, the HierarchyNumber object uses all the
uncommented Simulink subsystems and Stateflow chart diagrams in the model to generate the model
hierarchy numbers. Otherwise, the object uses the custom subsystem list that you specify. For
example, to generate the hierarchy number of Stateflow chart diagrams in a model, specify a list of
the subsystem paths.

Properties
Source — Model or list of subsystems
string scalar | character vector | handle | string array | cell array

Model or subsystem, specified as one of these values:

Attributes:

GetAccess public
SetAccess private

 slreportgen.utils.HierarchyNumber class

7-221

Methods
Public Methods

subsystemPaths spaths =
subsystemPaths(thisHierarchyNumberObj)
returns a string array of the paths of the
subsystems in the system represented by
thisHierarchyNumberObj.

generateHierarchyNumber hNum =
generateHierarchyNumber(thisHierarchyN
umberObj,diagram) returns a multilevel
number that represents the position of the
specified diagram in the system represented by
thisHierarchyNumberObj. Specify diagram
as one of these values:

• Handle or path of a Simulink model or
subsystem

• Handle or path of a Stateflow chart
• Stateflow chart ID
• Stateflow chart object
• Stateflow Simulink function
• Subcharted Stateflow state
• Subcharted Stateflow function
• Subcharted Stateflow box

Examples

Generate Number That Represents Subsystem Position in Model Hierarchy

Create an slreportgen.utils.HierarchyNumber object for the slrgex_f14 model and generate
the number that represents the position of the Aircraft Dynamics Model subsystem in the model
hierarchy.

modelName = "slrgex_f14";
load_system(modelName);
hierNumberObj = slreportgen.utils.HierarchyNumber(modelName);
hierNumber = generateHierarchyNumber(hierNumberObj,"slrgex_f14/Aircraft Dynamics Model")

hierNumber =
"1.1"

Use Hierarchy Numbers in Section Titles

This example generates the hierarchy number for each diagram in a model and uses the number in
the title of the report section that corresponds to the diagram.

7 Classes

7-222

Import the packages so that you do not have to use long, fully-qualified class names.

import mlreportgen.dom.*;
import mlreportgen.report.*;
import slreportgen.finder.*;
import slreportgen.utils.*;

Load a model.

model = "slrgex_f14";
load_system(model);

Create a report. Turn off numbering for the report sections.

rpt = Report("output","pdf");
open(rpt);
mlreportgen.report.Section.number(rpt,false);

Create the table of contents and add it to the report.

toc = TableOfContents();
append(rpt,toc);

Create a chapter and turn on chapter numbering.

chapter = Chapter(model + " Model");
chapter.Numbered = true;

Create a diagram finder and a HierarchyNumber object for the model.

finder = DiagramFinder(model);
hierNumberObj = HierarchyNumber(model);

For each found diagram, generate the number that represents the relative position of the diagram in
the model hierarchy. Create a section for the diagram and use the generated number in the title. Turn
off the default section numbering. Append the section to the chapter.

while hasNext(finder)
 result = next(finder);
 hierNumber = hierNumberObj.generateHierarchyNumber(result.Path);
 title = strcat (hierNumber + " " + result.Name);
 section = Section(title);
 section.Numbered = false;
 append(chapter, section);
end

Append the chapter to the report.

append(rpt,chapter);

Close and view the report.

close(rpt);
rptview(rpt);

Here is the generated table of contents:

 slreportgen.utils.HierarchyNumber class

7-223

See Also
mlreportgen.report.Section | mlreportgen.report.Report

Introduced in R2021b

7 Classes

7-224

slreportgen.webview.ExportOptions class
Package: slreportgen.webview

Options for exporting Simulink model to web view

Description
Use an slreportgen.webview.ExportOptions object to specify the items to export to a web view
or an embedded web view report.

Construction
exportopts = slreportgen.webview.ExportOptions(wvdoc) creates an export options
object, exportopts, for the wvdoc web view or embedded web view document. wvdoc is created
using slreportgen.webview.WebViewDocument or
slreportgen.webview.EmbeddedWebViewDocument. When you create a Web view or embedded
Web view document, an export options object is created automatically.

Input Arguments

wvdoc — Web view object
slreportgen.webview.WebViewDocument or
slreportgen.webview.EmbeddedWebViewDocument object

Web view document, specified as a Web view or embedded Web view object.

Output Arguments

exportopts — Export options
class

Export options, returned as a class containing properties that specify what to export to a web view
document.

Properties
Diagrams — Diagram or diagrams to export to the web view
character vector

Diagram on page 7-226 or diagrams to export to the web view, specified as a character vector.

SearchScope — System and subsystem levels to export for the specified
Current and Below (default) | All | Current and Above

System and subsystem levels to export, specified as one of:

• Current and Below — Current specified system or subsystem and all of its dependents.
• Current — Current specified system or subsystem
• Current and Above — Current specified system or subsystem and all of its antecedents

 slreportgen.webview.ExportOptions class

7-225

• All — All systems and subsystems in the model

IncludeMaskedSubsystems — Option to export masked subsystems
False (default) | True

Option to export masked subsystems, specified as a logical. If you set IncludeMaskedSystems to
False, no masked subsystems are exported. If you set it to True, all masked subsystems are
exported.

IncludeReferencedModels — Option to export referenced models
False (default) | True

Option to export referenced models, specified as a logical. If you set IncludeReferencedModels to
False, no masked subsystems are exported. If you set it to True, all masked subsystems are
exported.

IncludeSimulinkLibraryLinks — Option to export Simulink library links
False (default) | True

Option to export Simulink library links, specified as a logical. If you set
IncludeSimulinkLibraryLinks to False, no library links are exported. If you set it to True, all
library links are exported.

IncludeUserLibraryLinks — Option to export user-defined library links
False (default) | True

Option to export user-defined library links, specified as a logical. If you set
IncludeUserLibraryLinks to False, no user-defined library links are exported. If you set it to
True, all user-defined library links are exported.

FilterCallback — Function to determine whether to export a system and its descendants
function name or handle

Function to determine whether to export a system and its descendants, specified as a function name
or function handle. The function must return True to include the system or False to exclude the
system.

More About
Diagram

Diagram refers to a Simulink model, subsystem, or Stateflow chart.

See Also
slreportgen.webview.WebViewDocument |
slreportgen.webview.EmbeddedWebViewDocument | slwebview

Introduced in R2017a

7 Classes

7-226

slreportgen.webview.WebViewDocument class
Package: slreportgen.webview

Create a web view document generator

Description
Creates a document generator that generates an HTML document containing a web view of one or
more Simulink models.

Construction
wvdocgen = slreportgen.webview.WebViewDocument(docname,model) creates a document
generator that generates an HTML document at the specified location containing a web view of the
specified model. Use the generator’s fill method to generate the document.

wvdocgen = slreportgen.webview.WebViewDocument(docname,model1,model2,...
modeln)creates a document generator that includes two or more models in the web view that it
creates. This constructor assigns an array of default slreportgen.webview.ExportOptions
objects to the generator’s ExportOptions property, one for each of the models to be included in the
generated document’s web view. You can use the objects to specify custom export options for the
models to be exported.

wvdocgen = slreportgen.webview.WebViewDocument(docname,{model1,model2,...
modeln}) assigns a default slreportgen.webview.ExportOptions object to the generator’s
ExportOptions property that applies to all of the models to be exported.

wvdocgen = slreportgen.webview.WebViewDocument(docname) creates a web view
document generator for an initially unspecified model or set of models. Use the Systems property of
the generator’s ExportOptions property to specify the model or models to be included in the web
view that it generates.

Input Arguments
docname — Name of output document file and folder
character vector

Name of the zip file and/or folder containing the report generated by this generator. Use this
generator’s PackageType property to specify whether to package the generated report as a file or a
folder or both. If you specify an extension, the extension must be.htmx. If you do not specify an
extension, the report generator appends .htmx.

model — Name of Simulink model to export
character vector

Name of the Simulink model to export to an interactive HTML Web view, specified as a character
vector.

 slreportgen.webview.WebViewDocument class

7-227

Output Arguments
wvdoc — Web view document generator
slreportgen.Web view.WebViewDocument object

Properties
CurrentHoldID — Identifier of current hole in document
character vector

Identifier of current hole in document. This is a read-only property.

ExportOptions — Web view export options
slreportgen.webview.ExportOptions (default)

An array of slreportgen.webview.ExportOptions objects, one for each model or set of models
to be exported. The generator’s constructor sets this property with default values for the model or
models you specify. Use the properties of the ExportOptions object or objects to customize export
of the models to the generated web view. For example, you can specify additional models to include or
whether to include the block diagrams of masked subsystems and library blocks.

ForceOverwrite — Overwrite existing file or folder
True (default) | False

Whether to overwrite an existing report with the same name. True overwrites the existing report.
False generates the report under a new name.

OpenStatus — Status of the web view document
unopened (default) | opened

OutputPath — Path of the document output directory
current working directory (default)

Path of the document output directory.

PackageType — Packaging for files generated
'both' (default) | 'zipped' | 'unzipped'

Packaging to use for output document, specified as one of these character vectors:

• 'zipped' — Creates a zip file with an .htmx extension
• 'unzipped' — Creates a folder of files
• 'both' — Creates both zipped and unzipped output

TemplatePath — Path of the template to use to generated this document
character vector

Path to the HTML template to use to generate this report. The template has an .htmtx extension.
This property points by default to a default template. To use a custom template, set this property to
the path of the custom template.

TitleBarText — Text for HTML browser title bar
character vector

7 Classes

7-228

Text to display in the title bar of the HTML browser displaying the generated web view document.
The default text is “Simulink Web View - Created by Simulink Report Generator."

Methods
Method Purpose
fill Invokes web view generator’s hole-filling

methods (e.g., fillslwebview) to fill the holes in
the web view document’s template

fillslwebview Fills template’s slwebview hole with a web view
getExportModels Names of models to be included in the web view
getExportDiagrams Paths and handles of block diagrams to be

included in the web view
getExportSimulinkSubSystems Paths and handles of subsystem blocks to be

included in this web view
getExportStateflowCharts Paths and handles of
getExportStateflowDiagrams Array of Stateflow diagram paths

Examples
Export Model to a Web View

import slreportgen.webview.*
open_system('f14')
d = WebViewDocument('f14WebView', 'f14');
fill(d);
rptview(d);

Export Multiple Models to a Web View

The export options in this example allow you to view the subsystem that implements the Simulink
library block, Band-Limited White Noise, in the f14 model and the Stateflow chart that implements
the Engine block in the slrgex_sf_car model. If the example did not enable the export options,
the subsystem and chart would appear only as blocks in the exported web view.

import slreportgen.webview.*
open_system('f14');
open_system('slrgex_sf_car');
wvdoc = WebViewDocument(...
 'myWebview','f14','slrgex_sf_car');
opts = wvdoc.ExportOptions;

f14Opts = opts(1);
f14Opts.IncludeMaskedSubsystems = true;
f14Opts.IncludeSimulinkLibraryLinks = true;

sfcarOpts = opts(2);
sfcarOpts.IncludeMaskedSubsystems = true;

fill(wvdoc)
rptview(wvdoc);

 slreportgen.webview.WebViewDocument class

7-229

Export Selected Systems to a Web View

This example exports f14’s root system and Aircraft Dynamics Model subsystem.

import slreportgen.webview.*
open_system('f14');
wvdoc = WebViewDocument('myWebView', ...
 {'f14', 'f14/Aircraft Dynamics Model'});
wvdoc.ExportOptions.SearchScope = 'Current';
fill(wvdoc)
rptview(wvdoc);

Export Subsystem’s Ancestors to a Web View

This example exports f14’s root system and Controller subsystem.

import slreportgen.webview.*
open_system('f14');
wvdoc = WebViewDocument(...
 'mydoc', 'f14/Controller');
wvdoc.ExportOptions.SearchScope = 'CurrentAndAbove';
fill(wvdoc)
rptview(wvdoc);

See Also
slreportgen.webview.EmbeddedWebViewDocument | slreportgen.webview.ExportOptions

Introduced in R2017a

7 Classes

7-230

Functions

8

getDiagramReporter
Class: slreportgen.finder.BlockResult
Package: slreportgen.finder

Returns Diagram reporter for this block result

Syntax
reporter = getDiagramReporter(result)

Description
reporter = getDiagramReporter(result) returns a diagram reporter if the block result
contains a subsystem or chart block. The reporter generates a snapshot of the block's diagram or
chart, respectively. If the block result contains any other type of block, this method returns empty,
[]. To include a diagram of the subsystem or chart block search result in a report, add this
reporter to the report, either directly or via a Chapter or Section reporter.

Input Arguments
result — Block result object
BlockResult object

BlockResult object, which is the output of the slreportgen.finder.BlockFinder class.

Output Arguments
reporter — Diagram reporter object
slreportgen.report.Diagram object | []

Diagram reporter object, returned as an slreportgen.report.Diagram or empty, []. If the
result contains a subsystem or chart block, this result returns a Diagram reporter that generates
a snapshot of the block's block diagram or chart, respectively. Otherwise, it returns empty, [].

Examples
Add Block Diagram to Report

Add a subsystem snapshot and property table of the Controller block subsystem of the f14 model to a
report.

model_name = 'f14';
load_system(model_name)
import slreportgen.report.*
import slreportgen.finder.*
import mlreportgen.report.*

rpt = slreportgen.report.Report('output','pdf');
chapter = Chapter();

8 Functions

8-2

chapter.Title = 'Block Diagram Reporter Example';

blkFinder = BlockFinder(model_name);
blocks = find(blkFinder);
for block = blocks
 if block.Name == "Controller"
 rptr = getDiagramReporter(block);
 section = Section("Title", ...
 strrep(block.Name, newline,' '));
 add(section,rptr);
 add(section,block);
 add(chapter,section);
 end
end
add(rpt,chapter)
rptview(rpt)

 getDiagramReporter

8-3

See Also
slreportgen.finder.BlockFinder | slreportgen.report.Diagram

Introduced in R2018b

8 Functions

8-4

getReporter
Class: slreportgen.finder.BlockResult
Package: slreportgen.finder

Get block reporter

Syntax
reporter = getReporter(blockResult)

Description
reporter = getReporter(blockResult) returns a reporter that generates a properties table for
the block in the result.

Input Arguments
blockResult — Block result object
slreportgen.finder.BlockResult object

Search result object for a block, specified as an slreportgen.finder.BlockResult object.

Output Arguments
reporter — Simulink object properties reporter
block-specific reporter object | slreportgen.report.SimulinkObjectProperties object

Simulink object properties reporter, returned as one of these values:

• Block-specific reporter object, when the Report API includes a reporter for the block. For example,
the getReporter method returns an slreportgen.report.DocBlock object when the search
result represents a DocBlock block.

• An slreportgen.report.SimulinkObjectProperties object, when the Report API does not
include a reporter specific to the block. A SimulinkObjectProperties reporter generates a
properties table for the block.

See Also
slreportgen.finder.BlockFinder | slreportgen.report.SimulinkObjectProperties

Introduced in R2017b

 getReporter

8-5

getDiagramReporter
Class: slreportgen.finder.DiagramElementResult
Package: slreportgen.finder

Returns Diagram reporter for diagram element result

Syntax
reporter = getDiagramReporter(result)

Description
reporter = getDiagramReporter(result) returns a reporter that generates a snapshot of the
element returned in the diagram element result, or empty, []. If the result contains a diagram
element, such as a Simulink block, or Stateflow chart or subchart, that contains a diagram, this
method returns a reporter that generates a snapshot of the diagram. Otherwise, it returns empty, [].
For example, this method returns a diagram reporter for chart and subchart results but [] for state
results, which do not contain diagrams. To include the diagram of an applicable search result in a
report, add this reporter to the report, either directly or via a Chapter or Section reporter.

Input Arguments
result — Diagram element result object
DiagramElementResult object

DiagramElementResult object, which is the output of the
slreportgen.finder.DiagramElementFinder class.

Output Arguments
reporter — Diagram reporter object
slreportgen.report.Diagram object | []

Diagram reporter object, returned as an slreportgen.report.Diagram object, depending on the
search result. If the search result is an object that contains a diagram, such as a subsystem block or a
subchart, the output is a diagram reporter. Otherwise, it is empty, []. If not empty, the diagram
reporter generates a snapshot image of the diagram element.

Examples

Add Stateflow Function Diagram to Report

The slrgex_sf_car model uses a Simulink Function, which is a function that uses a Simulink
subsystem to compute its outputs from its inputs. This example finds the diagrams in the model and
for each diagram uses an slreportgen.DiagramElementFinder object to find the Simulink
Function subsystems. For each slreportgen.DiagramElementResult object returned by the
finder, the example uses the Name property value as a section title and calls the
getDiagramReporter method to return the subsystem diagram to add to the section.

8 Functions

8-6

import slreportgen.report.*
import slreportgen.finder.*
import mlreportgen.report.*

model = "slrgex_sf_car";
load_system(model);

rpt = slreportgen.report.Report("output","pdf");
chapter = Chapter();
chapter.Title = "Diagram Element Result Example";

% Find all diagrams in the model
diagFinder = DiagramFinder(model);
diagrams = find(diagFinder);
for diag = diagrams
 % Find all Simulink Function subsystems in the current diagram
 elemFinder = DiagramElementFinder(diag);
 elemFinder.Types = "slfunction";
 elems = find(elemFinder);
 for elem = elems
 section = Section("Title", ...
 mlreportgen.utils.normalizeString(elem.Name));
 % Get the diagram reporter from the result and add it to the section
 rptr = getDiagramReporter(elem);
 if ~isempty(rptr)
 add(section,rptr)
 end
 add(section,elem);
 add(chapter,section);
 end
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

 getDiagramReporter

8-7

See Also
slreportgen.finder.DiagramElementFinder | slreportgen.report.Diagram

Introduced in R2018b

8 Functions

8-8

getReporter
Class: slreportgen.finder.DiagramElementResult
Package: slreportgen.finder

Get diagram element reporter

Syntax
reporter = getReporter(result)

Description
reporter = getReporter(result) returns a reporter that generates a properties table for the
diagram element returned in this result. A report or reporter to which a diagram element result is
added invokes this method to generate a properties table for the element in the result. If you need to
customize a properties table, you can invoke this method to get the properties reporter. Then, modify
the reporter and add the modified properties reporter to the target report or reporter.

Input Arguments
result — Diagram element result object
slreportgen.finder.DiagramElementResult object

Diagram element result object, specified as an slreportgen.finder.DiagramElementResult
object.

Output Arguments
reporter — Diagram element reporter object
block-specific reporter object | slreportgen.report.SimulinkObjectProperties object |
slreportgen.report.StateflowObjectProperties object

Diagram element reporter object, returned as one of these values:

• Block-specific reporter object, when the diagram element is a block and the Report API includes a
reporter for the block. For example, the getReporter method returns an
slreportgen.report.DocBlock object when the search result represents a DocBlock block.

• An slreportgen.report.SimulinkObjectProperties object for all other blocks and block
diagram elements.

• An slreportgen.report.StateflowObjectProperties object for Stateflow chart elements.

See Also
slreportgen.finder.DiagramElementResult |
slreportgen.report.StateflowObjectProperties |
slreportgen.report.SimulinkObjectProperties

 getReporter

8-9

Introduced in R2017b

8 Functions

8-10

getReporter
Class: slreportgen.finder.DiagramResult
Package: slreportgen.finder

Get diagram reporter

Syntax
reporter = getReporter(result)

Description
reporter = getReporter(result) returns an slreportgen.report.Diagram reporter for the
diagram returned by this report. The diagram reporter adds a snapshot of the diagram to a report. A
report or reporter to which you add a diagram result invokes this method to create an image of the
diagram that the result contains. If you need to change the size or otherwise customize the diagram
image, you can invoke this method to get the diagram reporter. Then, modify the reporter and add the
modified diagram reporter to a destination report or reporter.

Input Arguments
result — Diagram finder object
finder object

DiagramFinder object, which you create using the slreportgen.finder.DiagramFinder class.

Output Arguments
reporter — Diagram reporter object
slreportgen.report.Diagram object

Diagram reporter object, returned as an slreportgen.report.Diagram object. The Diagram
reporter generates a snapshot image of the diagram.

See Also
slreportgen.finder.DiagramFinder | slreportgen.report.Diagram

Introduced in R2017b

 getReporter

8-11

getReporter
Class: slreportgen.finder.ModelVariableResult
Package: slreportgen.finder

Get reporter for model variable search result

Syntax
reporter = getReporter(variableResult)

Description
reporter = getReporter(variableResult) returns an
slreportgen.report.ModelVariable object for a model variable search result.

Input Arguments
variableResult — Result of model variable search
slreportgen.finder.ModelVariableResult object

Result of a search using the find or next method of an
slreportgen.finder.ModelVariableFinder object.

Output Arguments
reporter — Reporter for model variable
slreportgen.report.ModelVariable object

Reporter that includes information about a model variable in a report. Customize the content and
formatting of the information for a variable by setting properties of the reporter.

Examples

Customize the Formatting of a Model Variable in a Report

Customize the formatting of a model variable in a report by setting the reporter properties.

% Create a Report
rpt = slreportgen.report.Report("MyReport","pdf");

% Create a Chapter
chapter = mlreportgen.report.Chapter();
chapter.Title = "Model Variable Reporter Example";

% Load the model
model_name = "slrgex_sf_car";
load_system(model_name);

8 Functions

8-12

% Find the variables in the model
finder = slreportgen.finder.ModelVariableFinder(model_name);

while hasNext(finder)
 result = next(finder);

 % Get the ModelVariable reporter for the result
 % Customize the formatting of numbers
 reporter = getReporter(result);
 reporter.NumericFormat = "%.4f";

 % Add the reporter to the chapter
 add(chapter,reporter);
end
% Add chapter to the report
add(rpt,chapter);

% Close the report and open the viewer
close(rpt);
rptview(rpt);

See Also
slreportgen.finder.ModelVariableFinder | slreportgen.finder.ModelVariableResult
| slreportgen.report.ModelVariable

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2019b

 getReporter

8-13

getVariableID
Class: slreportgen.finder.ModelVariableResult
Package: slreportgen.finder

Get unique ID of model variable

Syntax
varID = getVariableID(variableResult)

Description
varID = getVariableID(variableResult) returns a string that uniquely identifies the variable
represented by the model variable search result. This ID is the default value of the LinkTarget
property of the slreportgen.report.ModelVariable reporter for the variable. Therefore, you
can use the ID to generate a link to the reported content for the variable.

Input Arguments
variableResult — Result that represents a model variable
slreportgen.finder.ModelVariableResult object

Result of a search using the find or next method of an
slreportgen.finder.ModelVariableFinder object.

Output Arguments
varID — Variable ID
string scalar

Unique ID for the model variable, returned as a string scalar.

Examples

Create a List of Variables with Links to Content

You can use the variable ID returned by the getVariableID method to create a link to the reported
content for the variable. This example generates a report of the variables used by the
slrgex_sf_car model. The list of variables at the beginning of the report provides links to the
reported content for the variables.

% Create a Report
rpt = slreportgen.report.Report("MyReport","pdf");

% Load the model
model_name = "slrgex_sf_car";
load_system(model_name);

8 Functions

8-14

% Create a Chapter
chapter = mlreportgen.report.Chapter();
chapter.Title = sprintf("Variables Used in the %s model",model_name);

% Find the variables in the model
finder = slreportgen.finder.ModelVariableFinder(model_name);
results = find(finder);

% Create a list of the variables with links to the reported variable content
ul = mlreportgen.dom.OrderedList;
for r = results
 varname = r.Name;
 %get ID that is used for the link target for this variable
 varid = getVariableID(r);
 link = mlreportgen.dom.InternalLink(varid,varname);
 li = mlreportgen.dom.ListItem();
 append(li,link);
 append(ul,li);
end
add(chapter,ul);

% Add reporters for the variables to report
for r = results
 % Get the ModelVariable reporter for the result
 % Customize the formatting of numbers
 reporter = getReporter(r);
 reporter.NumericFormat = "%.4f";

 % Add the reporter to the chapter
 add(chapter,reporter);

end
add(rpt,chapter);

% Close the report and open the viewer
close(rpt);
rptview(rpt);

See Also
slreportgen.finder.ModelVariableResult | slreportgen.report.ModelVariable |
slreportgen.finder.ModelVariableFinder

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2019b

 getVariableID

8-15

getVariableValue
Class: slreportgen.finder.ModelVariableResult
Package: slreportgen.finder

Get value of variable from model variable search result

Syntax
value = getVariableValue(variableResult)

Description
value = getVariableValue(variableResult) returns the value of the variable represented by
the model variable search result.

Input Arguments
variableResult — Result that represents a model variable
slreportgen.finder.ModelVariableResult object

Result of a search using the find or next method of an
slreportgen.finder.ModelVariableFinder object.

Examples

Use getVariableValue to Identify Simulink.Bus Objects

If the getVariableValue method returns a Simulink.Bus object, use an
slreportgen.report.BusObject object instead of an slreportgen.report.ModelVariable
object to report on the bus object.

mdl = "sldemo_bus_arrays";
load_system(mdl);

rpt = slreportgen.report.Report("ExampleBusReport", "pdf");

% Find variables used by the model
f = slreportgen.finder.ModelVariableFinder(mdl);
results = find(f);

for r = results
 % If the result represents a Bus object, add a Bus object reporter to the
 % report
 if isa(getVariableValue(r), "Simulink.Bus")
 reporter = slreportgen.report.BusObject(r);
 % Add the reporter to a chapter in the report
 ch = mlreportgen.report.Chapter(reporter.Name);
 add(ch, reporter);
 add(rpt, ch);

8 Functions

8-16

 end
end

% Close and view the report
close(rpt);
rptview(rpt);

See Also
slreportgen.finder.ModelVariableResult | slreportgen.report.BusObject |
slreportgen.report.ModelVariable | slreportgen.finder.ModelVariableFinder

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2019b

 getVariableValue

8-17

slreportgen.report.Bus.createTemplate
Class: slreportgen.report.Bus
Package: slreportgen.report

Create bus reporter template

Syntax
template = slreportgen.report.Bus.createTemplate(templatePath,type)

Description
template = slreportgen.report.Bus.createTemplate(templatePath,type) creates a
copy of the slreportgen.report.Bus reporter template for the report type specified by type at
the location specified by templatePath. You can use the copied template as a starting point to
design a custom bus reporter template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the copy of the template, returned as a string scalar. The file name extension of
the template is based on the specified template type. For example, if the type argument is 'pdf',
the file name extension is .pdftx.

Examples

Create a Bus Reporter Template

Create a copy of the HTML template for the slreportgen.report.Bus reporter and save it with
the name myBusTemplate in the mytemplates folder.

template = slreportgen.report.Bus.createTemplate...
 ('mytemplates/myBusTemplate','html');

8 Functions

8-18

After you modify the template, you can use it by setting the TemplateSrc property of a Bus reporter
to the path of the template file.

See Also
slreportgen.report.Bus | slreportgen.report.Report

Introduced in R2021a

 slreportgen.report.Bus.createTemplate

8-19

slreportgen.report.Bus.customizeReporter
Class: slreportgen.report.Bus
Package: slreportgen.report

Create subclass of slreportgen.report.Bus class

Syntax
reporter = slreportgen.report.Bus.customizeReporter(classpath)

Description
reporter = slreportgen.report.Bus.customizeReporter(classpath) creates a reporter
class definition file that defines a subclass of slreportgen.report.Bus at the location specified by
classpath. The method also copies the default reporter templates to the resources/templates
subfolder of the folder that contains the class definition file. You can use the class definition file as a
starting point to design a custom bus reporter class for your report.

Input Arguments
classpath — Path and name of new class definition file
string scalar | character vector

Path and name of new class definition file, specified as a string scalar or character vector.

You can specify a relative path or an absolute path. For example, this code creates MyClass.m in the
subfolder myFolder of the current folder.

slreportgen.report.Bus.customizeReporter("myFolder/MyClass")

To create the reporter class in a class folder, precede the class name with the @ character. Do not
specify the .m extension. For example, this code creates MyClass.m in the subfolder myFolder/
@MyClass in the current folder.
slreportgen.report.Bus.customizeReporter("myFolder/@MyClass")

See “Folders Containing Class Definitions”.

To create the reporter class in a class package, precede the folder name with the + character. For
example, this code creates a bus reporter in the myOrg package folder in the current folder.
slreportgen.report.Bus.customizeReporter("+myOrg/@MyClass")

Output Arguments
reporter — Path and file name of new reporter class
string scalar

Path and file name of the new reporter class, returned as a string scalar.

8 Functions

8-20

Examples

Create Custom Bus Reporter

Create a custom bus reporter, myBus, and the associated default templates in the subfolder
MyFolder of the current working folder.

slreportgen.report.Bus.customizeReporter("MyFolder/myBus")

ans =

 "MyFolder\myBus.m"

See Also
slreportgen.report.Bus | slreportgen.report.Report

Introduced in R2021a

 slreportgen.report.Bus.customizeReporter

8-21

slreportgen.report.Bus.getClassFolder
Class: slreportgen.report.Bus
Package: slreportgen.report

Get location of folder that contains the slreportgen.report.Bus class definition file

Syntax
path = slreportgen.report.Bus.getClassFolder()

Description
path = slreportgen.report.Bus.getClassFolder() returns the path of the folder that
contains the slreportgen.report.Bus class definition file.

Output Arguments
path — slreportgen.report.Bus class definition file location
character vector

slreportgen.report.Bus class definition file location, returned as a character vector.

Examples

Get Bus Reporter Class Folder

Get the location of the folder that contains the bus reporter class definition file.

path = slreportgen.report.Bus.getClassFolder()

See Also
slreportgen.report.Bus | slreportgen.report.Report

Introduced in R2021a

8 Functions

8-22

slreportgen.report.BusObject.createTemplate
Class: slreportgen.report.BusObject
Package: slreportgen.report

Create bus object reporter template

Syntax
template = slreportgen.report.BusObject.createTemplate(templatePath,type)

Description
template = slreportgen.report.BusObject.createTemplate(templatePath,type)
creates a copy of the bus object reporter template specified by type at the templatePath location.
You can use the copied template as a starting point to design a custom bus object template for your
report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the copy of the template, returned as a string scalar. The file name extension of
the template is based on the specified template type. For example, if the type argument is 'pdf',
the file name extension is .pdftx.

Examples

Create a Bus Object Reporter Template

Create a copy of the HTML template for the bus object reporter and save it with the name
myBusTemplate in the mytemplates folder.

template = slreportgen.report.BusObject.createTemplate...
 ('mytemplates/myBusObjectTemplate','html');

 slreportgen.report.BusObject.createTemplate

8-23

After you modify the template, you can use it by setting the TemplateSrc property of the reporter.

See Also
slreportgen.report.BusObject | slreportgen.report.Report

Introduced in R2019b

8 Functions

8-24

slreportgen.report.BusObject.customizeReporter
Class: slreportgen.report.BusObject
Package: slreportgen.report

Create custom bus object reporter

Syntax
reporter = slreportgen.report.BusObject.customizeReporter(classpath)

Description
reporter = slreportgen.report.BusObject.customizeReporter(classpath) creates a
reporter class definition file that defines a subclass of slreportgen.report.BusObject. The
slreportgen.report.BusObject.customizeReporter method creates the reporter class
definition file at the location specified by classpath. The method also copies the default reporter
templates to the resources/templates subfolder of the folder that contains the class definition
file. You can use the class definition file as a starting point to design a custom bus object reporter
class for your report.

Input Arguments
classpath — Path and name of new class definition file
string scalar | character vector

Path and name of new class definition file, specified as a string scalar or character vector.

You can specify a relative path or an absolute path. For example, this code creates MyClass.m in the
subfolder myFolder of the current folder.

slreportgen.report.BusObject.customizeReporter("myFolder/MyClass")

To create the reporter class in a class folder, precede the class name with the @ character. Do not
specify the .m extension. For example, this code creates MyClass.m in the subfolder myFolder/
@MyClass in the current folder.
slreportgen.report.BusObject.customizeReporter("myFolder/@MyClass")

See “Folders Containing Class Definitions”.

To create the reporter class in a class package, precede the folder name with the + character. For
example, this code creates a bus object reporter in the myOrg package folder in the current folder.
slreportgen.report.BusObject.customizeReporter("+myOrg/@MyClass")

Output Arguments
reporter — Path and file name of new bus object reporter class
string scalar

Path and file name of the new bus object reporter class, returned as a string scalar.

 slreportgen.report.BusObject.customizeReporter

8-25

Examples

Create Custom Bus Object Reporter

Create a custom bus object reporter, MyBus, and the associated default templates in the subfolder
MyFolder of the current working folder.

slreportgen.report.BusObject.customizeReporter('MyFolder/MyBus')

ans =

 "MyFolder\MyBus.m"

See Also
slreportgen.report.BusObject | slreportgen.report.Report

Introduced in R2019b

8 Functions

8-26

slreportgen.report.BusObject.getClassFolder
Class: slreportgen.report.BusObject
Package: slreportgen.report

Bus object reporter class definition file location

Syntax
path = slreportgen.report.BusObject.getClassFolder()

Description
path = slreportgen.report.BusObject.getClassFolder() returns the path of the folder
that contains the slreportgen.report.BusObject class definition file.

Output Arguments
path — Bus object reporter class definition file location
character vector

slreportgen.report.BusObject class definition file location, returned as a character vector.

Examples

Get Bus Object Reporter Class Folder

Get the location of the folder that contains the bus object reporter class definition.

path = slreportgen.report.BusObject.getClassFolder()

See Also
slreportgen.report.BusObject | slreportgen.report.Report

Introduced in R2019b

 slreportgen.report.BusObject.getClassFolder

8-27

slreportgen.report.CFunction.createTemplate
Class: slreportgen.report.CFunction
Package: slreportgen.report

Create C Function block reporter template

Syntax
template = slreportgen.report.CFunction.createTemplate(templatePath,type)

Description
template = slreportgen.report.CFunction.createTemplate(templatePath,type)
creates a copy of the slreportgen.report.CFunction reporter template for the report type
specified by type at the location specified by templatePath. You can use the template copy as a
starting point to design a custom C Function block reporter template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the copy of the template, returned as a string scalar. The file name extension of
the template is based on the specified template type. For example, if the type argument is 'pdf',
the file name extension is .pdftx.

Examples

Create a C Function Block Reporter Template

Create a copy of the HTML template for the slreportgen.report.CFunction reporter and save it
with the name myCFunctionTemplate in the mytemplates folder.

template = slreportgen.report.CFunction.createTemplate...
 ('mytemplates/myCFunctionTemplate','html');

8 Functions

8-28

After you modify the template, you can use it by setting the TemplateSrc property of a CFunction
reporter to the path of the template file.

See Also
slreportgen.report.CFunction | slreportgen.report.Report

Introduced in R2021b

 slreportgen.report.CFunction.createTemplate

8-29

slreportgen.report.CFunction.customizeReporter
Class: slreportgen.report.CFunction
Package: slreportgen.report

Create subclass of slreportgen.report.CFunction class

Syntax
reporter = slreportgen.report.CFunction.customizeReporter(classpath)

Description
reporter = slreportgen.report.CFunction.customizeReporter(classpath) creates a
reporter class definition file that defines a subclass of slreportgen.report.CFunction at the
location specified by classpath. The method also copies the default reporter templates to the
resources/templates subfolder of the folder that contains the class definition file. You can use the
class definition file as a starting point to design a custom C Function block reporter class for your
report.

Input Arguments
classpath — Path and name of new class definition file
string scalar | character vector

Path and name of new class definition file, specified as a string scalar or character vector.

You can specify a relative path or an absolute path. For example, this code creates MyClass.m in the
subfolder myFolder of the current folder.

slreportgen.report.CFunction.customizeReporter("myFolder/MyClass")

To create the reporter class in a class folder, precede the class name with the @ character. Do not
specify the .m extension. For example, this code creates MyClass.m in the subfolder myFolder/
@MyClass in the current folder.
slreportgen.report.CFunction.customizeReporter("myFolder/@MyClass")

See “Folders Containing Class Definitions”.

To create the reporter class in a class package, precede the folder name with the + character. For
example, this code creates a C Function block reporter in the myOrg package folder in the current
folder.
slreportgen.report.CFunction.customizeReporter("+myOrg/@MyClass")

Output Arguments
reporter — Path and file name of new reporter class
string scalar

Path and file name of the new reporter class, returned as a string scalar.

8 Functions

8-30

Examples

Create Custom C Function Block Reporter

Create a custom C Function block reporter, myCFunction, and the associated default templates in
the subfolder MyFolder of the current working folder.

slreportgen.report.CFunction.customizeReporter("MyFolder/myCFunction")

ans =

 "MyFolder\myCFunction.m"

See Also
slreportgen.report.CFunction | slreportgen.report.Report

Introduced in R2021b

 slreportgen.report.CFunction.customizeReporter

8-31

slreportgen.report.CFunction.getClassFolder
Class: slreportgen.report.CFunction
Package: slreportgen.report

Get location of folder that contains the slreportgen.report.CFunction class definition file

Syntax
path = slreportgen.report.CFunction.getClassFolder()

Description
path = slreportgen.report.CFunction.getClassFolder() returns the path of the folder
that contains the slreportgen.report.CFunction class definition file.

Output Arguments
path — slreportgen.report.CFunction class definition file location
character vector

slreportgen.report.CFunction class definition file location, returned as a character vector.

Examples

Get C Function Block Reporter Class Folder

Get the location of the folder that contains the CFunction reporter class definition file.

path = slreportgen.report.CFunction.getClassFolder()

See Also
slreportgen.report.CFunction | slreportgen.report.Report

Introduced in R2021b

8 Functions

8-32

slreportgen.report.DataDictionary.createTemplate
Class: slreportgen.report.DataDictionary
Package: slreportgen.report

Copy the default slreportgen.report.DataDictionary reporter template

Syntax
template = slreportgen.report.DataDictionary.createTemplate(templatePath,
type)

Description
template = slreportgen.report.DataDictionary.createTemplate(templatePath,
type) creates a copy of the slreportgen.report.DataDictionary reporter template for the
report type specified by type at the location specified by templatePath. You can use the copy of the
template as a starting point to design a custom slreportgen.report.DataDictionary template
for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the copy of the template, returned as a string scalar. The file name extension of
the template is based on the specified template type. For example, if the type argument is 'pdf',
the file name extension is .pdftx.

Examples

Create a Data Dictionary Reporter Template

Create a copy of the HTML template for the slreportgen.report.DataDictionary reporter and
save it with the name myDataDictionaryTemplate in the mytemplates folder.

 slreportgen.report.DataDictionary.createTemplate

8-33

template = slreportgen.report.DataDictionary.createTemplate...
 ('mytemplates/myDataDictionaryTemplate','html');

After you modify the template, you can use it by setting the TemplateSrc property of a data
dictionary reporter to the path of the template file.

See Also
slreportgen.report.Report | slreportgen.report.DataDictionary

Introduced in R2020b

8 Functions

8-34

slreportgen.report.DataDictionary.customizeRepor
ter
Class: slreportgen.report.DataDictionary
Package: slreportgen.report

Create subclass of slreportgen.report.DataDictionary class

Syntax
reporter = slreportgen.report.DataDictionary.customizeReporter(classpath)

Description
reporter = slreportgen.report.DataDictionary.customizeReporter(classpath)
creates a reporter class definition file that defines a subclass of
slreportgen.report.DataDictionary at the location specified by classpath. The method also
copies the default reporter templates to the resources/templates subfolder of the folder that
contains the class definition file. You can use the class definition file as a starting point to design a
custom data dictionary reporter class for your report.

Input Arguments
classpath — Path and name of new class definition file
string scalar | character vector

Path and name of new class definition file, specified as a string scalar or character vector.

You can specify a relative path or an absolute path. For example, this code creates MyClass.m in the
subfolder myFolder of the current folder.

slreportgen.report.DataDictionary.customizeReporter("myFolder/MyClass")

To create the reporter class in a class folder, precede the class name with the @ character. Do not
specify the .m extension. For example, this code creates MyClass.m in the subfolder myFolder/
@MyClass in the current folder.
slreportgen.report.DataDictionary.customizeReporter("myFolder/@MyClass")

See “Folders Containing Class Definitions”.

To create the reporter class in a class package, precede the folder name with the + character. For
example, this code creates a data dictionary reporter in the myOrg package folder in the current
folder.
slreportgen.report.DataDictionary.customizeReporter("+myOrg/@MyClass")

Output Arguments
reporter — Path and file name of new reporter class
string scalar

 slreportgen.report.DataDictionary.customizeReporter

8-35

Path and file name of the new reporter class, returned as a string scalar.

Examples

Create Custom Data Dictionary Reporter

Create a custom data dictionary reporter, myDataDictionary, and the associated default templates
in the subfolder MyFolder of the current working folder.

slreportgen.report.DataDictionary.customizeReporter('MyFolder/myDataDictionary')

ans =

 "MyFolder\myDataDictionary.m"

See Also
slreportgen.report.Report | slreportgen.report.DataDictionary

Introduced in R2020b

8 Functions

8-36

slreportgen.report.DataDictionary.getClassFolder
Class: slreportgen.report.DataDictionary
Package: slreportgen.report

Get location of folder that contains the slreportgen.report.DataDictionary class definition file

Syntax
path = slreportgen.report.DataDictionary.getClassFolder()

Description
path = slreportgen.report.DataDictionary.getClassFolder() returns the path of the
folder that contains the slreportgen.report.DataDictionary class definition file.

Output Arguments
path — slreportgen.report.DataDictionary class definition file location
character vector

slreportgen.report.DataDictionary class definition file location, returned as a character
vector.

Examples

Get Data Dictionary Reporter Class Folder

Get the location of the folder that contains the data dictionary reporter class definition file.

path = slreportgen.report.DataDictionary.getClassFolder()

See Also
slreportgen.report.Report | slreportgen.report.DataDictionary

Introduced in R2020b

 slreportgen.report.DataDictionary.getClassFolder

8-37

slreportgen.report.Diagram.createTemplate
Class: slreportgen.report.Diagram
Package: slreportgen.report

Create diagram template

Syntax
template = slreportgen.report.Diagram.createTemplate(templatePath,type)

Description
template = slreportgen.report.Diagram.createTemplate(templatePath,type) creates
a copy of the default diagram template specified by type at the location specified by templatePath.
Use the copied template as a starting point to design a custom diagram template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the copy of the template, returned as a string scalar. The file name extension of
the template is based on the specified template type. For example, if the type argument is 'pdf',
the file name extension is .pdftx.

Examples
Create a Report Template

Before you run this example, create a copy of the default HTML diagram template in the
mytemplates folder. Name the copied template myDiagramReporter.htmtx. To use the new
template, assign its path to the slreportgen.report.Diagram TemplateSrc property.

import slreportgen.report.*
rpt = Report('My Report','html');
load_system('slrgex_sf_car')
diagram = Diagram('slrgex_sf_car');

8 Functions

8-38

template = Diagram.createTemplate('mytemplates\myDiagram','html');
diagram.TemplateSrc = template;

See Also
slreportgen.report.Diagram | slreportgen.report.Report

Introduced in R2017b

 slreportgen.report.Diagram.createTemplate

8-39

slreportgen.report.Diagram.customizeReporter
Class: slreportgen.report.Diagram
Package: slreportgen.report

Create custom diagram reporter class

Syntax
reporter = slreportgen.report.Diagram.customizeReporter(classpath)

Description
reporter = slreportgen.report.Diagram.customizeReporter(classpath) creates a
diagram class definition file that is a subclass of slreportgen.report.Diagram. The file is created
at the specified classpath location. The customizeReporter method also copies the default
diagram templates to the <classpath>/resources/template folder. You can use the new class
definition file as a starting point to design a custom diagram class for your report.

Input Arguments
classpath — Location of custom diagram class
current working folder (default) | string | character array

Location of custom diagram class, specified as a string or character array. The classpath argument
also supports specifying a folder with @ before the class name.

Output Arguments
reporter — Diagram reporter path
string

Diagram reporter path, returned as the string specifying the path to the derived report class file.

Examples
Create Custom Diagram Reporter

Create a custom diagram reporter and its associated default templates. The derived class file is
created at the specified path relative to the current working folder. In this case, the path to the
MyDiagram.m class file is <current working folder>/newDiagram/@MyDiagram/
MyDiagram.m. The default diagram templates are in the <current working folder>/
newDiagram/@MyDiagram/resources/templates folder.

import slreportgen.report.*
Diagram.customizeReporter('newDiagram/@MyDiagram');

After editing this new class file and loading a model, you can use the new diagram reporter.

slrgex_sf_car;
diagram = MyDiagram('slrgex_sf_car');

8 Functions

8-40

See Also
slreportgen.report.Diagram | slreportgen.report.Report

Introduced in R2017b

 slreportgen.report.Diagram.customizeReporter

8-41

slreportgen.report.Diagram.getClassFolder
Class: slreportgen.report.Diagram
Package: slreportgen.report

Diagram class definition file location

Syntax
path = slreportgen.report.Diagram.getClassFolder()

Description
path = slreportgen.report.Diagram.getClassFolder() returns the path of the folder that
contains the diagram class definition file.

Output Arguments
path — Diagram class definition file location
character array

Diagram class definition file location, returned as a character array.

See Also
slreportgen.report.Diagram | slreportgen.report.Report

Introduced in R2017b

8 Functions

8-42

getSnapshotImage
Class: slreportgen.report.Diagram
Package: slreportgen.report

Diagram snapshot image file location

Syntax
path = getSnapshotImage(diag,rpt)

Description
path = getSnapshotImage(diag,rpt) takes the snapshot of the diagram specified by the
slreportgen.report.Diagram reporter (diag). It creates an image file and returns the path of
that file. rpt is the report into which the diagram is added. This method gives you access to the
image file so you can place it in specific locations of the report, such as on a title page. By changing
the report layout and then adding this image, you can control the image layout.

Note If you use this method, set the Diagram Scaling property to custom or zoom. If you use auto
scaling, the image does not scale to fit on the page.

Input Arguments
diag — Dialog reporter
variable name

Dialog reporter, specified as the variable name of the Diagram class. For example,

rpt = slreportgen.report.Report
diag = slreportgen.report.Diagram...
 ("f14/Aircraft Dynamics Model");
getSnapshotImage(diag,rpt)

rpt — Report name
variable name

Name of the report into which the diagram will go, specified as the report variable name.

Output Arguments
path — Location of snapshot image file
string

Location of snapshot image file, returned as a string. The location is a temporary folder that is
deleted when the report is closed. To retain the folder, set the Debug property of
slreportgen.report.Report.

 getSnapshotImage

8-43

See Also
slreportgen.report.Diagram | slreportgen.report.Report

Introduced in R2018b

8 Functions

8-44

slreportgen.report.DocBlock.createTemplate
Class: slreportgen.report.DocBlock
Package: slreportgen.report

Create DocBlock reporter template

Syntax
template = slreportgen.report.DocBlock.createTemplate(templatePath,type)

Description
template = slreportgen.report.DocBlock.createTemplate(templatePath,type)
creates a copy of the DocBlock reporter template specified by type at the templatePath location.
You can use the copied template as a starting point to design a custom DocBlock template for your
report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the copy of the template, returned as a string scalar. The file name extension of
the template is based on the specified template type. For example, if the type argument is 'pdf',
the file name extension is .pdftx.

Examples

Create a DocBlock Reporter Template

Create a copy of the HTML template for the DocBlock reporter and save it with the name
myDocBlockTemplate in the mytemplates folder.

template = slreportgen.report.DocBlock.createTemplate...
 ('mytemplates/myDocBlockTemplate','html');

 slreportgen.report.DocBlock.createTemplate

8-45

After you modify the template, you can use it by setting the TemplateSrc property of the reporter.

See Also
slreportgen.report.DocBlock | slreportgen.report.Report

Topics
“Modify Styles in a Microsoft Word Template”
“Modify Styles in HTML Templates”
“Modify Styles in PDF Templates”

Introduced in R2019b

8 Functions

8-46

slreportgen.report.DocBlock.customizeReporter
Class: slreportgen.report.DocBlock
Package: slreportgen.report

Create custom DocBlock reporter class

Syntax
reporter = slreportgen.report.DocBlock.customizeReporter(classpath)

Description
reporter = slreportgen.report.DocBlock.customizeReporter(classpath) creates a
class definition file that defines a subclass of slreportgen.report.DocBlock at the location
specified by classpath. The method also copies the default reporter templates to the resources/
templates subfolder of the folder that contains the class definition file. You can use the class
definition file as a starting point to design a custom DocBlock reporter class for your report.

Input Arguments
classpath — Path and name of new class definition file
string scalar | character vector

Path and name of new class definition file, specified as a string scalar or character vector.

You can specify a relative path or an absolute path. For example, this code creates MyClass.m in the
subfolder myFolder of the current folder.

slreportgen.report.DocBlock.customizeReporter("myFolder/MyClass")

To create the reporter class in a class folder, precede the class name with the @ character. Do not
specify the .m extension. For example, this code creates MyClass.m in the subfolder myFolder/
@MyClass in the current folder.

slreportgen.report.DocBlock.customizeReporter("myFolder/@MyClass")

See “Folders Containing Class Definitions”.

To create the reporter class in a class package, precede the folder name with the + character. For
example, this code creates a DocBlock reporter in the myOrg package folder in the current folder.
slreportgen.report.DocBlock.customizeReporter("+myOrg/@DocBlock");

Output Arguments
reporter — Path and file name of the new DocBlock reporter class
string scalar

Path and file name of the new DocBlock reporter class, returned as a string scalar.

 slreportgen.report.DocBlock.customizeReporter

8-47

Examples

Create Custom DocBlock Reporter

Create a custom DocBlock reporter, MyDocBlock, and its associated default templates in the
subfolder MyFolder of the current working folder.

slreportgen.report.DocBlock.customizeReporter('MyFolder/MyDocBlock')

ans =

 "MyFolder\MyDocBlock.m"

After editing this new class file, you can use it as your DocBlock reporter.

rptr = MyDocBlock();

Create Custom DocBlock Reporter in a Class Folder Inside a Package Folder

Create a custom DocBlock reporter and its associated default templates in a class folder that is a
subfolder of a package folder.

slreportgen.report.DocBlock.customizeReporter("+MyPackage/@MyDocBlock")

ans =

 "+MyPackage\@MyDocBlock\MyDocBlock.m"

After editing this new class file, you can use it as your DocBlock reporter.

rptr = MyPackage.MyDocBlock();

See Also
slreportgen.report.DocBlock | slreportgen.report.Report

Introduced in R2019b

8 Functions

8-48

slreportgen.report.DocBlock.getClassFolder
Class: slreportgen.report.DocBlock
Package: slreportgen.report

Get location of DocBlock reporter class definition file

Syntax
path = slreportgen.report.DocBlock.getClassFolder()

Description
path = slreportgen.report.DocBlock.getClassFolder() returns the path of the folder that
contains the slreportgen.report.DocBlock class definition file.

Output Arguments
path — Location of the DocBlock reporter class definition file
character vector

Location of the slreportgen.report.DocBlock class definition file, returned as a character
vector.

Examples

Get DocBlock Reporter Class Folder

Get the location of the folder that contains the DocBlock reporter class definition.

path = slreportgen.report.DocBlock.getClassFolder()

See Also
slreportgen.report.DocBlock | slreportgen.report.Report

Introduced in R2019b

 slreportgen.report.DocBlock.getClassFolder

8-49

slreportgen.report.ElementDiagram.createTemplat
e
Class: slreportgen.report.ElementDiagram
Package: slreportgen.report

Create element diagram template

Syntax
template = slreportgen.report.ElementDiagram.createTemplate(templatePath,
type)

Description
template = slreportgen.report.ElementDiagram.createTemplate(templatePath,
type) creates a copy of the default element diagram reporter template specified by type at the
location specified by templatePath. Use the copied template as a starting point to design a custom
diagram template for your report.

Input Arguments
templatePath — Location of reporter template
string | character vector | character array | template source object

Location of the reporter template, specified as a character vector, character array, or template source
object.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Template name
string

Name of template, returned as the path and file name of the template. The template file name
extension is assigned based on the specified output type. For example, for PDF output, the template
name has a .pdftx file extension.

Examples
Create an Element Diagram Template

slreportgen.report.ElementDiagram.createTemplate...
 ('mytemplates\myElemDiagram','html');

8 Functions

8-50

See Also
slreportgen.report.ElementDiagram | slreportgen.report.Report

Introduced in R2018b

 slreportgen.report.ElementDiagram.createTemplate

8-51

slreportgen.report.ElementDiagram.customizeRep
orter
Class: slreportgen.report.ElementDiagram
Package: slreportgen.report

Create custom element diagram reporter class

Syntax
customRptrPath = slreportgen.report.ElementDiagram.customizeReporter(
classpath)

Description
customRptrPath = slreportgen.report.ElementDiagram.customizeReporter(
classpath) creates an empty element diagram class definition file that is a subclass of
slreportgen.report.ElementDiagram. The file is created at the specified classpath location.
The customizeReporter method also copies the default element diagram templates to the
<classpath>/resources/template folder. You can use the new class definition file as a starting
point to design a custom element diagram class for your report.

Input Arguments
classpath — Location of custom element diagram class
current working folder (default) | string | character array

Location of custom element diagram class, specified as a string or character array. The classpath
argument also supports specifying a folder with @ before the class name. For example, both of these
are valid paths:

• slreportgen.report.ElementDiagram.customizeReporter("path_folder/
MyClassA.m")

• slreportgen.report.ElementDiagram.customizeReporter("+package/@MyClassB")

Output Arguments
customRptrPath — Path of custom element diagram reporter
string

Path of the custom element diagram reporter classdef file that defines the custom element diagram
reporter, specified as a string.

Examples
Create Custom Element Diagram Reporter

Create a custom element diagram reporter and its associated default templates. The derived class file
is created at the specified path relative to the current working folder. In this case, the path to the

8 Functions

8-52

MyElemDiagram.m class file is <current working folder>/newElemDiagram/
@MyElemDiagram/MyElemDiagram.m. The default diagram templates are in the <current
working folder>/newDiagram/@MyElemDiagram/resources/templates folder.

import slreportgen.report.*
ElementDiagram.customizeReporter('newElemDiagram/@MyElemDiagram');

After editing this new class file and loading a model, you can use the new diagram reporter.

slrgex_sf_car;
diagram = MyElemDiagram('slrgex_sf_car');

See Also
slreportgen.report.Report

Introduced in R2018b

 slreportgen.report.ElementDiagram.customizeReporter

8-53

slreportgen.report.ElementDiagram.getClassFolde
r
Class: slreportgen.report.ElementDiagram
Package: slreportgen.report

Element diagram class definition file location

Syntax
path = slreportgen.report.ElementDiagram.getClassFolder()

Description
path = slreportgen.report.ElementDiagram.getClassFolder() returns the path of the
folder that contains the element diagram class definition file.

Output Arguments
path — Element diagram class definition file location
character array

Element diagram class definition file location, returned as a character array.

See Also
slreportgen.report.Diagram | slreportgen.report.Report |
slreportgen.report.ElementDiagram

Introduced in R2018b

8 Functions

8-54

getSnapshotImage
Class: slreportgen.report.ElementDiagram
Package: slreportgen.report

Element diagram snapshot image file location

Syntax
path = getSnapshotImage(elemdiag,rpt)

Description
path = getSnapshotImage(elemdiag,rpt) generates the image of the element diagram this
reporter would generate if it were added to the report (rpt). This method returns the path of the
generated image. Use this method to take snapshots of element diagrams without having to add the
ElementDiagram reporter to a report. For example, you can use this method to set the Image
property of a TitlePage reporter to a snapshot of an element diagram.

Note If you use this method, set the ElementDiagram Scaling property to custom or zoom. If you
use auto scaling, the image does not scale to fit on the page.

Input Arguments
elemdiag — Element diagram reporter
ElementDiagram object

Element diagram reporter, specified as an ElementDiagram class object. For example,

load_system('f14')
rpt = slreportgen.report.Report;
eldiag = slreportgen.report.ElementDiagram...
 ("f14/Aircraft Dynamics Model");
getSnapshotImage(eldiag,rpt);

rpt — Report class object
Report class

Report class object used to generate the diagram image

Output Arguments
path — Location of snapshot image file
string

Location of snapshot image file, returned as a string. The location is a temporary folder that is
deleted when the report is closed. To retain the folder, set the Debug property of
slreportgen.report.Report.

 getSnapshotImage

8-55

See Also
slreportgen.report.ElementDiagram | slreportgen.report.Report

Introduced in R2018b

8 Functions

8-56

slreportgen.report.ExecutionOrder.createTemplate
Class: slreportgen.report.ExecutionOrder
Package: slreportgen.report

Create execution order reporter template

Syntax
template = slreportgen.report.ExecutionOrder.createTemplate(templatePath,
type)

Description
template = slreportgen.report.ExecutionOrder.createTemplate(templatePath,
type) creates a copy of the slreportgen.report.ExecutionOrder reporter template for the
report type specified by type at the location specified by templatePath. You can use the copied
template as a starting point to design a custom execution order reporter template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the copy of the template, returned as a string scalar. The file name extension of
the template is based on the specified template type. For example, if the type argument is 'pdf',
the file name extension is .pdftx.

Examples

Create an Execution Order Reporter Template

Create a copy of the HTML template for the slreportgen.report.ExecutionOrder reporter and
save it with the name myExecutionOrderTemplate in the mytemplates folder.

template = slreportgen.report.ExecutionOrder.createTemplate...
 ('mytemplates/myExecutionOrder','html');

 slreportgen.report.ExecutionOrder.createTemplate

8-57

After you modify the template, you can use it by setting the TemplateSrc property of an
ExecutionOrder reporter to the path of the template file.

See Also
slreportgen.report.ExecutionOrder

Introduced in R2020b

8 Functions

8-58

slreportgen.report.ExecutionOrder.customizeRepo
rter
Class: slreportgen.report.ExecutionOrder
Package: slreportgen.report

Create custom execution order reporter class

Syntax
reporter = slreportgen.report.ExecutionOrder.customizeReporter(classpath)

Description
reporter = slreportgen.report.ExecutionOrder.customizeReporter(classpath)
creates a class definition file that defines a subclass of slreportgen.report.ExecutionOrder at
the location specified by classpath. This method also copies the default reporter templates to the
resources/templates subfolder of the folder that contains the class definition file. You can use the
class definition file as a starting point to design a custom execution order reporter class for your
report.

Input Arguments
classpath — Path and name of new class definition file
string scalar | character vector

Path and name of new class definition file, specified as a string scalar or character vector.

You can specify a relative path or an absolute path. For example, this code creates MyClass.m in the
subfolder myFolder of the current folder.

slreportgen.report.ExecutionOrder.customizeReporter("myFolder/MyClass")

To create the reporter class in a class folder, precede the class name with the @ character. Do not
specify the .m extension. For example, this code creates MyClass.m in the subfolder myFolder/
@MyClass in the current folder.

slreportgen.report.ExecutionOrder.customizeReporter("myFolder/@MyClass")

See “Folders Containing Class Definitions”.

To create the reporter class in a class package, precede the folder name with the + character. For
example, this code creates an execution order reporter in the myOrg package folder in the current
folder.
slreportgen.report.ExecutionOrder.customizeReporter("+myOrg/@MyClass");

Output Arguments
reporter — Path and file name of new execution order reporter class
string scalar

 slreportgen.report.ExecutionOrder.customizeReporter

8-59

Path and file name of the new execution order reporter class, returned as a string scalar.

Examples

Create Custom Execution Order Reporter

Create a custom execution order reporter, MyExcutionOrder, and its associated default templates in
the subfolder MyFolder of the current working folder.

slreportgen.report.ExecutionOrder.customizeReporter('MyFolder/MyExecutionOrder')

ans =

 "MyFolder\MyExecutionOrder.m"

See Also
slreportgen.report.ExecutionOrder

Introduced in R2020b

8 Functions

8-60

slreportgen.report.ExecutionOrder.getClassFolder
Class: slreportgen.report.ExecutionOrder
Package: slreportgen.report

Get location of execution order reporter class definition file

Syntax
path = slreportgen.report.ExecutionOrder.getClassFolder()

Description
path = slreportgen.report.ExecutionOrder.getClassFolder() returns the path of the
folder that contains the slreportgen.report.ExecutionOrder class definition file.

Output Arguments
path — Location of the execution order reporter class definition file
character vector

Location of the slreportgen.report.ExecutionOrder class definition file, returned as a
character vector.

Examples

Get Execution Order Reporter Class Folder

Get the folder that contains the slreportgen.report.ExecutionOrder reporter class definition.

path = slreportgen.report.ExecutionOrder.getClassFolder();

See Also
slreportgen.report.ExecutionOrder

Introduced in R2020b

 slreportgen.report.ExecutionOrder.getClassFolder

8-61

slreportgen.report.LookupTable.createTemplate
Class: slreportgen.report.LookupTable
Package: slreportgen.report

Create Simulink lookup table block reporter template

Syntax
template = slreportgen.report.LookupTable.createTemplate(templatePath,type)

Description
template = slreportgen.report.LookupTable.createTemplate(templatePath,type)
creates a copy of the LookupTable reporter template specified by type at the templatePath
location. You can use the copied template as a starting point to design a custom LookupTable reporter
template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the copy of the template, returned as a string scalar. The file name extension of
the template is based on the specified template type. For example, if the type argument is 'pdf',
the file name extension is .pdftx.

Examples
Create LookupTable Reporter Template

Before you run this example, create a copy of the default HTML LookupTable template and save it in
a mytemplates folder. Name the copied template myLUTable.htmtx. Edit the template as desired. To
use the new template for the lookup table, assign its path to the TemplateSrc property of
slreportgen.report.LookupTable.

import mlreportgen.report.*
import slreportgen.report.*

8 Functions

8-62

rpt = Report('My Report','html');
lutable = LookupTable();
template = LookupTable.createTemplate('mytemplates\myLUTable','html');
lutable.TemplateSrc = template;

See Also
slreportgen.report.Report | slreportgen.report.LookupTable

Topics
“Modify Styles in a Microsoft Word Template”
“Modify Styles in HTML Templates”
“Modify Styles in PDF Templates”

Introduced in R2018a

 slreportgen.report.LookupTable.createTemplate

8-63

slreportgen.report.LookupTable.customizeReporte
r
Class: slreportgen.report.LookupTable
Package: slreportgen.report

Create custom LookupTable reporter class

Syntax
reporter = slreportgen.report.LookupTable.customizeReporter(classpath)

Description
reporter = slreportgen.report.LookupTable.customizeReporter(classpath) creates a
LookupTable reporter class definition file that is a subclass of
slreportgen.report.LookupTable. The file is created at the specified classpath location. The
LookupTable.customizeReporter method also copies the default LookupTable reporter
templates to the <classpath>/resources/template folder. You can use the class definition file as
a starting point to design a custom LookupTable reporter class for your report.

Input Arguments
classpath — Location of custom lookup table reporter class
current working folder (default) | string | character array

Location of custom lookup table reporter class, specified as a string or character array. The
classpath argument also supports specifying a folder with @ before the class name.

Output Arguments
reporter — Lookup table reporter path
string

Lookup table reporter path, returned as the string specifying the path to the derived report class file.

Examples
Create Custom Lookup Table Reporter

Create a custom lookup table reporter and its associated default templates. The derived class file is
created at the specified path relative to the current working folder. In this case, the path to the
myLUTable.m class file is <current working folder>/newLUTable/@myLUTable/
myLUTable.m. The default lookup table reporter templates are in the <current working
folder>/newLUTable/@myLUTable/resources/templates folder.

import mlreportgen.report.*
import slreportgen.report.*
LookupTable.customizeReporter('newLUTable/@myLUTable');

8 Functions

8-64

After editing this new class file, you can use it as your LookupTable reporter.

lutable = myLUTable();

See Also
slreportgen.report.Report | slreportgen.report.LookupTable

Introduced in R2018a

 slreportgen.report.LookupTable.customizeReporter

8-65

slreportgen.report.LookupTable.getClassFolder
Class: slreportgen.report.LookupTable
Package: slreportgen.report

Lookup Table reporter class definition file location

Syntax
path = slreportgen.report.LookupTable.getClassFolder()

Description
path = slreportgen.report.LookupTable.getClassFolder() returns the path of the folder
that contains the LookupTable class definition file.

Output Arguments
path — Lookup Table class definition file location
character array

Lookup Table class definition file location, returned as a character array.

See Also
slreportgen.report.Report | slreportgen.report.LookupTable

Introduced in R2018a

8 Functions

8-66

slreportgen.report.MATLABFunction.createTemplat
e
Class: slreportgen.report.MATLABFunction
Package: slreportgen.report

Create copy of slreportgen.report.MATLABFunction reporter template

Syntax
template = slreportgen.report.MATLABFunction.createTemplate(templatePath,
type)

Description
template = slreportgen.report.MATLABFunction.createTemplate(templatePath,
type) creates a copy of the slreportgen.report.MATLABFunction reporter template for the
report type specified by type at the location specified by templatePath. You can use the copied
template as a starting point to design a custom MATLABFunction reporter template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the copy of the template, returned as a string scalar. The file name extension of
the template is based on the specified template type. For example, if the type argument is 'pdf',
the file name extension is .pdftx.

Examples
Create MATLAB Function Reporter Template

Create a copy of the HTML template for the slreportgen.report.MATLABFunction reporter and
save it with the name myMATLABFunctionTemplate in the mytemplates folder.

 slreportgen.report.MATLABFunction.createTemplate

8-67

template = slreportgen.report.MATLABFunction.createTemplate...
 ('mytemplates/myMATLABFunctionTemplate','html');

After you modify the template, you can use it by setting the TemplateSrc property of a
MATLABFunction reporter to the path of the template file.

See Also
slreportgen.report.MATLABFunction | slreportgen.report.Report

Topics
“Modify Styles in a Microsoft Word Template”
“Modify Styles in HTML Templates”
“Modify Styles in PDF Templates”

Introduced in R2018a

8 Functions

8-68

slreportgen.report.MATLABFunction.customizeRep
orter
Class: slreportgen.report.MATLABFunction
Package: slreportgen.report

Create subclass of slreportgen.report.MATLABFunction class

Syntax
reporter = slreportgen.report.MATLABFunction.customizeReporter(classpath)

Description
reporter = slreportgen.report.MATLABFunction.customizeReporter(classpath)
creates a reporter class definition file that defines a subclass of
slreportgen.report.MATLABFunction at the location specified by classpath. The method also
copies the default reporter templates to the resources/templates subfolder of the folder that
contains the class definition file. You can use the class definition file as a starting point to design a
custom MATLAB function reporter class for your report.

Input Arguments
classpath — Path and name of new class definition file
string scalar | character vector

Path and name of the new class definition file, specified as a string scalar or character vector.

You can specify a relative path or an absolute path. For example, this code creates MyClass.m in the
subfolder myFolder of the current folder.

slreportgen.report.MATLABFunction.customizeReporter("myFolder/MyClass")

To create the reporter class in a class folder, precede the class name with the @ character. Do not
specify the .m extension. For example, this code creates MyClass.m in the subfolder myFolder/
@MyClass in the current folder.
slreportgen.report.MATLABFunction.customizeReporter("myFolder/@MyClass")

See “Folders Containing Class Definitions”.

To create the reporter class in a class package, precede the folder name with the + character. For
example, this code creates a MATLAB function reporter in the myOrg package folder in the current
folder.
slreportgen.report.MATLABFunction.customizeReporter("+myOrg/@MyClass")

Output Arguments
reporter — Path and file name of new reporter class
string scalar

 slreportgen.report.MATLABFunction.customizeReporter

8-69

Path and file name of the new reporter class, returned as a string scalar.

Examples
Create Custom MATLAB Function Reporter

Create a custom slreportgen.report.MATLABFunction reporter, myMATLABFunction, and the
associated default templates in the subfolder MyFolder of the current working folder.

slreportgen.report.MATLABFunction.customizeReporter("MyFolder/myMATLABFunction")

ans =

 "MyFolder\myMATLABFunction.m"

See Also
slreportgen.report.MATLABFunction | slreportgen.report.Report

Introduced in R2018a

8 Functions

8-70

slreportgen.report.MATLABFunction.getClassFolde
r
Class: slreportgen.report.MATLABFunction
Package: slreportgen.report

Get location of folder that contains slreportgen.report.MATLABFunction class definition file

Syntax
path = slreportgen.report.MATLABFunction.getClassFolder()

Description
path = slreportgen.report.MATLABFunction.getClassFolder() returns the path of the
folder that contains the slreportgen.report.MATLABFunction class definition file.

Output Arguments
path — slreportgen.report.MATLABFunction class definition file location
character vector

slreportgen.report.MATLABFunction class definition file location, returned as a character
vector.

Examples

Get slreportgen.report.MATLABFunction Class Folder

Get the location of the folder that contains the slreportgen.report.MATLABFunction reporter
class definition file.

path = slreportgen.report.MATLABFunction.getClassFolder()

See Also
slreportgen.report.MATLABFunction | slreportgen.report.Report

Introduced in R2018a

 slreportgen.report.MATLABFunction.getClassFolder

8-71

slreportgen.report.ModelConfiguration.createTem
plate
Class: slreportgen.report.ModelConfiguration
Package: slreportgen.report

Create model configuration reporter template

Syntax
template = slreportgen.report.ModelConfiguration.createTemplate(templatePath,
type)

Description
template = slreportgen.report.ModelConfiguration.createTemplate(templatePath,
type) creates a copy of the slreportgen.report.ModelConfiguration reporter template for
the report type specified by type at the location specified by templatePath. You can use the copied
template as a starting point to design a custom model configuration reporter template for your
report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the copy of the template, returned as a string scalar. The file name extension of
the template is based on the specified template type. For example, if the type argument is 'pdf',
the file name extension is .pdftx.

Examples

Create a Simulink Model Configuration Reporter Template

Create a copy of the HTML template for the slreportgen.report.ModelConfiguration reporter
and save it with the name myModelConfigurationTemplate in the mytemplates folder.

8 Functions

8-72

template = slreportgen.report.ModelConfiguration.createTemplate...
 ('mytemplates/myModelConfigurationTemplate','html');

After you modify the template, you can use it by setting the TemplateSrc property of a model
configuration reporter to the path of the template file.

See Also
slreportgen.report.ModelConfiguration

Introduced in R2020b

 slreportgen.report.ModelConfiguration.createTemplate

8-73

slreportgen.report.ModelConfiguration.customizeR
eporter
Class: slreportgen.report.ModelConfiguration
Package: slreportgen.report

Create custom model configuration reporter class

Syntax
reporter = slreportgen.report.ModelConfiguration.customizeReporter(classpath)

Description
reporter = slreportgen.report.ModelConfiguration.customizeReporter(classpath)
creates a class definition file that defines a subclass of
slreportgen.report.ModelConfiguration at the location specified by classpath. This method
also copies the default reporter templates to the resources/templates subfolder of the folder that
contains the class definition file. You can use the class definition file as a starting point to design a
custom model configuration reporter class for your report.

Input Arguments
classpath — Path and name of new class definition file
string scalar | character vector

Path and name of new class definition file, specified as a string scalar or character vector.

You can specify a relative path or an absolute path. For example, this code creates MyClass.m in the
subfolder myFolder of the current folder.

slreportgen.report.ModelConfiguration.customizeReporter("myFolder/MyClass")

To create the reporter class in a class folder, precede the class name with the @ character. Do not
specify the .m extension. For example, this code creates MyClass.m in the subfolder myFolder/
@MyClass in the current folder.

slreportgen.report.ModelConfiguration.customizeReporter("myFolder/@MyClass")

See “Folders Containing Class Definitions”.

To create the reporter class in a class package, precede the folder name with the + character. For
example, this code creates a model configuration reporter in the myOrg package folder in the current
folder.
slreportgen.report.ModelConfiguration.customizeReporter("+myOrg/@MyClass");

Output Arguments
reporter — Path and file name of new model configuration reporter class
string scalar

8 Functions

8-74

Path and file name of the new model configuration reporter class, returned as a string scalar.

Examples

Create Custom Model Configuration Reporter

Create a custom model configuration reporter, MyModelConfiguration, and its associated default
templates in the subfolder MyFolder of the current working folder.

slreportgen.report.ModelConfiguration.customizeReporter('MyFolder/MyModelConfiguration')

ans =

 "MyFolder\MyModelConfiguration.m"

See Also
slreportgen.report.ModelConfiguration

Introduced in R2020b

 slreportgen.report.ModelConfiguration.customizeReporter

8-75

slreportgen.report.ModelConfiguration.getClassFol
der
Class: slreportgen.report.ModelConfiguration
Package: slreportgen.report

Get location of model configuration reporter class definition file

Syntax
path = slreportgen.report.ModelConfiguration.getClassFolder()

Description
path = slreportgen.report.ModelConfiguration.getClassFolder() returns the path of
the folder that contains the slreportgen.report.ModelConfiguration class definition file.

Output Arguments
path — Location of the model configuration reporter class definition file
character vector

Location of the slreportgen.report.ModelConfiguration class definition file, returned as a
character vector.

Examples

Get Model Configuration Reporter Class Folder

Get the folder that contains the model configuration reporter class definition.

path = slreportgen.report.ModelConfiguration.getClassFolder()

See Also
slreportgen.report.ModelConfiguration

Introduced in R2020b

8 Functions

8-76

getConfigSet
Class: slreportgen.report.ModelConfiguration
Package: slreportgen.report

Get active configuration set from model configuration reporter

Syntax
configSetObj = getConfigSet(reporter)

Description
configSetObj = getConfigSet(reporter) returns the Simulink.ConfigSet object that
represents the active model configuration set to be reported by the specified
slreportgen.report.ModelConfiguration reporter.

Input Arguments
reporter — Model configuration reporter
slreportgen.report.ModelConfiguration object

Model configuration reporter, specified as an slreportgen.report.ModelConfiguration object.

Output Arguments
configSetObj — Model configuration set object
Simulink.ConfigSet object

Model configuration set object, specified as a Simulink.ConfigSet object.

Examples

Get Active Configuration Set to be Reported

Create an slreportgen.report.ModelConfiguration reporter for the slrgex_sf_car model
and then get the active configuration set object associated with the reporter.

model = "slrgex_sf_car";
load_system(model);
reporter = slreportgen.report.ModelConfiguration(model);
configSet = getConfigSet(reporter)

configSet =

 Simulink.ConfigSet

See Also
Simulink.ConfigSet | slreportgen.report.ModelConfiguration

 getConfigSet

8-77

Introduced in R2020b

8 Functions

8-78

slreportgen.report.ModelVariable.createTemplate
Class: slreportgen.report.ModelVariable
Package: slreportgen.report

Create model variable reporter template

Syntax
template = slreportgen.report.ModelVariable.createTemplate(templatePath,type)

Description
template = slreportgen.report.ModelVariable.createTemplate(templatePath,type)
creates a copy of the slreportgen.report.ModelVariable reporter template for the report type
specified by type at the location specified by templatePath. You can use the copied template as a
starting point to design a custom model variable reporter template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the copy of the template, returned as a string scalar. The file name extension of
the template is based on the specified template type. For example, if the type argument is 'pdf',
the file name extension is .pdftx.

Examples

Create a Simulink Model Variable Reporter Template

Create a copy of the HTML template for the slreportgen.report.ModelVariable reporter and
save it with the name myModelVariableTemplate in the mytemplates folder.

template = slreportgen.report.ModelVariable.createTemplate...
 ('mytemplates/myModelVariableTemplate','html');

 slreportgen.report.ModelVariable.createTemplate

8-79

After you modify the template, you can use it by setting the TemplateSrc property of the model
variable reporter.

See Also
slreportgen.finder.ModelVariableResult | slreportgen.report.ModelVariable |
slreportgen.finder.ModelVariableFinder

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2019b

8 Functions

8-80

slreportgen.report.ModelVariable.customizeReport
er
Class: slreportgen.report.ModelVariable
Package: slreportgen.report

Create custom model variable reporter class

Syntax
reporter = slreportgen.report.ModelVariable.customizeReporter(classpath)

Description
reporter = slreportgen.report.ModelVariable.customizeReporter(classpath)
creates a class definition file that defines a subclass of slreportgen.report.ModelVariable at
the location specified by classpath. This method also copies the default reporter templates to the
resources/templates subfolder of the folder that contains the class definition file. You can use the
class definition file as a starting point to design a custom model variable reporter class for your
report.

Input Arguments
classpath — Path and name of new class definition file
string scalar | character vector

Path and name of new class definition file, specified as a string scalar or character vector.

You can specify a relative path or an absolute path. For example, this code creates MyClass.m in the
subfolder myFolder of the current folder.

slreportgen.report.ModelVariable.customizeReporter("myFolder/MyClass")

To create the reporter class in a class folder, precede the class name with the @ character. Do not
specify the .m extension. For example, this code creates MyClass.m in the subfolder myFolder/
@MyClass in the current folder.

slreportgen.report.ModelVariable.customizeReporter("myFolder/@MyClass")

See “Folders Containing Class Definitions”.

To create the reporter class in a class package, precede the folder name with the + character. For
example, this code creates a model variable reporter in the myOrg package folder in the current
folder.
slreportgen.report.ModelVariable.customizeReporter("+myOrg/@MyClass");

Output Arguments
reporter — Path and file name of new model variable reporter class
string scalar

 slreportgen.report.ModelVariable.customizeReporter

8-81

Path and file name of the new model variable reporter class, returned as a string scalar.

Examples

Create Custom Model Variable Reporter

Create a custom model variable reporter, MyModelVariable, and its associated default templates in
the subfolder MyFolder of the current working folder.

slreportgen.report.ModelVariable.customizeReporter('MyFolder/MyModelVariable')

ans =

 "MyFolder\MyModelVariable.m"

See Also
Simulink.VariableUsage | slreportgen.finder.ModelVariableFinder |
slreportgen.finder.ModelVariableResult

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2019b

8 Functions

8-82

slreportgen.report.ModelVariable.getClassFolder
Class: slreportgen.report.ModelVariable
Package: slreportgen.report

Get location of model variable reporter class definition file

Syntax
path = slreportgen.report.ModelVariable.getClassFolder()

Description
path = slreportgen.report.ModelVariable.getClassFolder() returns the path of the
folder that contains the slreportgen.report.ModelVariable class definition file.

Output Arguments
path — Location of the model variable reporter class definition file
character vector

Location of the slreportgen.report.ModelVariable class definition file, returned as a character
vector.

Examples

Get Model Variable Reporter Class Folder

Get the folder that contains the model variable reporter class definition.

path = slreportgen.report.ModelVariable.getClassFolder()

See Also
Simulink.VariableUsage | slreportgen.finder.ModelVariableResult |
slreportgen.finder.ModelVariableResult

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2019b

 slreportgen.report.ModelVariable.getClassFolder

8-83

getVariableName
Class: slreportgen.report.ModelVariable
Package: slreportgen.report

Get name of variable from model variable reporter

Syntax
name = getVariableName(reporter)

Description
name = getVariableName(reporter) returns the name of the model variable to be reported by
the specified model variable reporter.

Input Arguments
reporter — Model variable reporter
slreportgen.report.Modelvariable object

Model variable reporter, specified as an slreportgen.report.ModelVariable object.

Output Arguments
name — Name of model variable
character vector

Name of model variable, returned as a character vector.

Examples

Get Name of Model Variable from Reporter

After you get the reporter for a model variable result, you can use the getVariableName method to
get the variable name from the reporter.

...
finder = slreportgen.finder.ModelVariableFinder(model);

while hasNext(finder)
 result = next(finder);

 % Get the ModelVariable reporter for the result
 % Get the variable name
 reporter = getReporter(result);
 name = getVariableName(reporter);
 ...
 % Add the reporter to the chapter
 add(chapter,reporter);

8 Functions

8-84

end
...

See Also
slreportgen.finder.ModelVariableResult | slreportgen.report.ModelVariable |
slreportgen.finder.ModelVariableFinder

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2019b

 getVariableName

8-85

getVariableValue
Class: slreportgen.report.ModelVariable
Package: slreportgen.report

Get value of variable from model variable reporter

Syntax
value = getVariableValue(reporter)

Description
value = getVariableValue(reporter) returns the value of the model variable to be reported
by the specified model variable reporter.

Input Arguments
reporter — Model variable reporter
slreportgen.report.Modelvariable object

Model variable reporter, specified as an slreportgen.report.ModelVariable.

Examples

Get Value of Model Variable from Model Variable Reporter

After you get the reporter for a model variable result, you can use the getVariableValue method
to get the variable value from the reporter.

...
finder = slreportgen.finder.ModelVariableFinder(model);

while hasNext(finder)
 result = next(finder);

 % Get the ModelVariable reporter for the result
 % Get the variable value
 reporter = getReporter(result);
 value = getVariableValue(reporter);
 ...
 % Add the reporter to the chapter
 add(chapter,reporter);
end
...

See Also
slreportgen.finder.ModelVariableResult | slreportgen.report.ModelVariable |
slreportgen.finder.ModelVariableFinder

8 Functions

8-86

Topics
“Report Generation for Simulink and Stateflow Elements” on page 1-9
“What Is a Reporter?”

Introduced in R2019b

 getVariableValue

8-87

slreportgen.report.Notes.createTemplate
Class: slreportgen.report.Notes
Package: slreportgen.report

Copy default slreportgen.report.Notes reporter template

Syntax
template = slreportgen.report.Notes.createTemplate(templatePath,type)

Description
template = slreportgen.report.Notes.createTemplate(templatePath,type) creates a
copy of the slreportgen.report.Notes reporter template for the report type specified by type at
the location specified by templatePath. You can use the copy of the template as a starting point to
design a custom slreportgen.report.Notes template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the copy of the template, returned as a string scalar. The file name extension of
the template is assigned based on the specified output type. For example, if type is 'pdf', the file
name extension is .pdftx.

Examples

Create a Notes Reporter Template

Create a copy of the HTML template for the slreportgen.report.Notes reporter and save it with
the name myNotesTemplate in the mytemplates folder.

template = slreportgen.report.Notes.createTemplate...
 ('mytemplates/myNotesTemplate','html');

8 Functions

8-88

Modify the template copy and then set the TemplateSrc property of the Notes reporter to the
template copy.

See Also
slreportgen.report.Notes | slreportgen.report.Report

Introduced in R2020a

 slreportgen.report.Notes.createTemplate

8-89

slreportgen.report.RptFile.createTemplate
Class: slreportgen.report.RptFile
Package: slreportgen.report

Create Report Explorer-based (RptFile) reporter template

Syntax
template = slreportgen.report.RptFile.createTemplate(templatePath,type)

Description
template = slreportgen.report.RptFile.createTemplate(templatePath,type) creates
a copy of the default Report Explorer-based reporter (RptFile) template specified by type at the
templatePath location . You can use the copied template as a starting point to design a custom
RptFile reporter template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the copy of the template, returned as a string scalar. The file name extension of
the template is based on the specified template type. For example, if the type argument is 'pdf',
the file name extension is .pdftx.

Examples
Create Report Explorer-based Reporter Template

Copy the template file of the desired output type. In this example the copied template file is named
myrptfile.htmtx and is saved in a folder named mytemplates. To use the new template for the
RptFile reporter, assign its path to the RptFile TemplateSrc property.

template = RptFile.createTemplate('mytemplates\myrptfile','html');
rptfile.TemplateSrc = template;

8 Functions

8-90

See Also
slreportgen.report.RptFile | slreportgen.report.Report

Topics
“Modify Styles in a Microsoft Word Template”
“Modify Styles in HTML Templates”
“Modify Styles in PDF Templates”

Introduced in R2019a

 slreportgen.report.RptFile.createTemplate

8-91

slreportgen.report.Notes.customizeReporter
Class: slreportgen.report.Notes
Package: slreportgen.report

Create subclass of slreportgen.report.Notes class

Syntax
reporter = slreportgen.report.Notes.customizeReporter(classpath)

Description
reporter = slreportgen.report.Notes.customizeReporter(classpath) creates a
reporter class definition file that defines a subclass of slreportgen.report.Notes at the location
specified by classpath. The method also copies the default reporter templates to the resources/
templates subfolder of the folder that contains the class definition file. You can use the class
definition file as a starting point to design a custom notes reporter class for your report.

Input Arguments
classpath — Path and name of new class definition file
string scalar | character vector

Path and name of new class definition file, specified as a string scalar or character vector.

You can specify a relative path or an absolute path. For example, this code creates MyClass.m in the
subfolder myFolder of the current folder.

slreportgen.report.Notes.customizeReporter("myFolder/MyClass")

To create the reporter class in a class folder, precede the class name with the @ character. Do not
specify the .m extension. For example, this code creates MyClass.m in the subfolder myFolder/
@MyClass in the current folder.
slreportgen.report.Notes.customizeReporter("myFolder/@MyClass")

See “Folders Containing Class Definitions”.

To create the reporter class in a class package, precede the folder name with the + character. For
example, this code creates a notes reporter in the myOrg package folder in the current folder.
slreportgen.report.Notes.customizeReporter("+myOrg/@MyClass")

Output Arguments
reporter — Path and file name of new reporter class
string scalar

Path and file name of the new reporter class, returned as a string scalar.

8 Functions

8-92

Examples

Create a Custom Notes Reporter

Create a custom notes reporter, myNotes, and the associated default templates in the subfolder
MyFolder of the current working folder.

slreportgen.report.Notes.customizeReporter("MyFolder/myNotes")

ans =

 "MyFolder\myNotes.m"

See Also
slreportgen.report.Notes | slreportgen.report.Report

Introduced in R2020a

 slreportgen.report.Notes.customizeReporter

8-93

slreportgen.report.Notes.getClassFolder
Class: slreportgen.report.Notes
Package: slreportgen.report

Get location of folder that contains slreportgen.report.Notes reporter class definition file

Syntax
path = slreportgen.report.Notes.getClassFolder()

Description
path = slreportgen.report.Notes.getClassFolder() returns the path of the folder that
contains the slreportgen.report.Notes class definition file.

Output Arguments
path — slreportgen.report.Notes class definition file location
character vector

slreportgen.report.Notes class definition file location, returned as a character vector.

Examples

Get Notes Reporter Class Folder

Get the location of the folder that contains the notes reporter class definition.

path = slreportgen.report.Notes.getClassFolder()

See Also
slreportgen.report.Notes | slreportgen.report.Report

Introduced in R2020a

8 Functions

8-94

copy
Class: slreportgen.report.Reporter
Package: slreportgen.report

Create copy of a Simulink reporter object and make deep copies of certain property values

Syntax
reporterObj2 = copy(reporterObj1)

Description
reporterObj2 = copy(reporterObj1) returns a copy of the specified reporter object. The
returned copy contains a “deep copy” on page 8-96 of any property value of reporterObj1 that
references a reporter or DOM object. As a result, the corresponding property value in
reporterObj2 refers to a new, independent object. You can modify the properties of the original or
new object without affecting the other object.

Input Arguments
reporterObj1 — Reporter to copy
reporter object

Reporter to copy, specified as an object of a “reporter class” on page 8-96.

Output Arguments
reporterObj2 — Copy of reporter
reporter object

Copy of reporter, returned as an object of a “reporter class” on page 8-96.

Examples

Copy a Simulink Reporter Object

This example copies a DocBlock reporter to show the effect of a deep copy operation on a reporter
property. Modifying a property of the Text object in the TextFormatter property of the copy of the
DocBlock object does not affect the original DocBlock object.

Load a model.

import slreportgen.report.*

model_name = "slrgex_fuelsys";
load_system(model_name);
docBlock = "slrgex_fuelsys/To Controller/Sensor Info";

Create a DocBlock reporter.

 copy

8-95

rptr1 = DocBlock(docBlock);

The Bold property of the Text object referenced by the TextFormatter property of the reporter is
empty.

rptr1.TextFormatter.Bold

ans =

 []

Copy the DocBlock object. In the copy, set the Bold property of the Text object referenced by the
TextFormatter property to true.

rptr2 = copy(rptr1);
rptr2.TextFormatter.Bold = true;
rptr2.TextFormatter.Bold

ans = logical
 1

In the original DocBlock object, the Bold property of the object referenced by the TextFormatter
property is still empty.

rptr1.TextFormatter.Bold

ans =

 []

More About
reporter class

A reporter class is a Report API class that is a subclass of the
mlreportgen.report.ReporterBase class, which is an undocumented, internal class.

deep copy

To make a deep copy of a handle object, the copy operation recursively copies property values that
are handles to objects so that all of the underlying data is copied. By contrast, with a shallow copy,
the copy operation copies the handle. The underlying data is not copied. When you copy a reporter,
the copy operation makes a deep copy of any property value that is a reporter object, or a DOM
object.

See Also
slreportgen.report.Reporter

Introduced in R2021a

8 Functions

8-96

slreportgen.report.Reporter.createTemplate
Class: slreportgen.report.Reporter
Package: slreportgen.report

Create reporter template

Syntax
template = slreportgen.report.Reporter.createTemplate(templatePath,type)

Description
template = slreportgen.report.Reporter.createTemplate(templatePath,type)
creates a copy of the slreportgen.report.Reporter template for the report type specified by
type at the location specified by templatePath. You can use the copied template as a starting point
to design a custom reporter template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the copy of the template, returned as a string scalar. The file name extension of
the template is based on the specified template type. For example, if the type argument is 'pdf',
the file name extension is .pdftx.

Examples

Create a Reporter Template

Create a copy of the HTML template for the slreportgen.report.Reporter class and save it with
the name myTemplate in the mytemplates folder.

template = slreportgen.report.Reporter.createTemplate...
 ('mytemplates/myTemplate','html');

 slreportgen.report.Reporter.createTemplate

8-97

After you modify the template, you can use it by setting the TemplateSrc property of a reporter to
the path of the template file.

See Also
slreportgen.report.Reporter | slreportgen.report.Report

Introduced in R2021a

8 Functions

8-98

slreportgen.report.Reporter.customizeReporter
Class: slreportgen.report.Reporter
Package: slreportgen.report

Create class derived from slreportgen.report.Reporter class

Syntax
reporter = slreportgen.report.Reporter.customizeReporter(classpath)

Description
reporter = slreportgen.report.Reporter.customizeReporter(classpath) creates a
reporter class definition file that defines a subclass of slreportgen.report.Reporter at the
location specified by classpath. The method also copies the default reporter templates to the
resources/templates subfolder of the folder that contains the class definition file. You can use the
class definition file as a starting point to design a custom reporter class.

Input Arguments
classpath — Path and name of new class definition file
string scalar | character vector

Path and name of new class definition file, specified as a string scalar or character vector.

You can specify a relative path or an absolute path. For example, this code creates MyClass.m in the
subfolder myFolder of the current folder.

slreportgen.report.Reporter.customizeReporter("myFolder/MyClass")

To create the reporter class in a class folder, precede the class name with the @ character. Do not
specify the .m extension. For example, this code creates MyClass.m in the subfolder myFolder/
@MyClass in the current folder.
slreportgen.report.Reporter.customizeReporter("myFolder/@MyClass")

See “Folders Containing Class Definitions”.

To create the reporter class in a class package, precede the folder name with the + character. For
example, this code creates a reporter in the myOrg package folder in the current folder.
slreportgen.report.Reporter.customizeReporter("+myOrg/@MyClass")

Output Arguments
reporter — Path and file name of new reporter class
string scalar

Path and file name of the new reporter class, returned as a string scalar.

 slreportgen.report.Reporter.customizeReporter

8-99

Examples

Create Custom Reporter

Create a custom reporter, myReporter, and the associated default templates in the subfolder
MyFolder of the current working folder.

slreportgen.report.Reporter.customizeReporter("MyFolder/myReporter")

ans =

 "MyFolder\myReporter.m"

See Also

Introduced in R2021a

8 Functions

8-100

slreportgen.report.Reporter.getClassFolder
Class: slreportgen.report.Reporter
Package: slreportgen.report

Get location of folder containing slreportgen.report.Reporter class definition file

Syntax
path = slreportgen.report.Reporter.getClassFolder()

Description
path = slreportgen.report.Reporter.getClassFolder() returns the path of the folder that
contains the slreportgen.report.Reporter class definition file.

Output Arguments
path — slreportgen.report.Reporter class definition file location
character vector

slreportgen.report.Reporter class definition file location, returned as a character vector.

Examples

Get Reporter Class Folder

Get the location of the folder that contains the slreportgen.report.Reporter class definition
file.

path = slreportgen.report.Reporter.getClassFolder()

See Also
slreportgen.report.Reporter | slreportgen.report.Report

Introduced in R2021a

 slreportgen.report.Reporter.getClassFolder

8-101

getImpl
Class: slreportgen.report.Reporter
Package: slreportgen.report

Get implementation of reporter

Syntax
impl = getImpl(reporter,report)

Description
impl = getImpl(reporter,report) returns the DOM object used to implement this reporter in
the specified report. The implementation object can help you debug report generation problems.

Input Arguments
reporter — Reporter
slreportgen.report.Reporter object | object of subclass of slreportgen.report.Reporter

Reporter object, specified as an object of slreportgen.report.Reporter or subclass of
slreportgen.report.Reporter.
Example: slreportgen.report.Diagram for a diagram reporter

report — Report
slreportgen.report.Report object

Report, specified as an slreportgen.report.Report object.

Output Arguments
impl — Implementation object
DOM object

Implementation object, returned as a DOM object. The DOM object is usually an
mlreportgen.dom.DocumentPart type object.

Examples

Get Reporter Implementation

This example shows how to use getImpl to obtain the DOM object used to create a diagram reporter.
You can use the getImpl method with any type of reporter.

load_system("slrgex_vdp")
import slreportgen.report.*
import mlreportgen.report.*
rpt = slreportgen.report.Report("output","pdf");

8 Functions

8-102

chapter = Chapter();
chapter.Title = "Diagram Reporter Example";

diagram = Diagram("slrgex_vdp");
diagram.Snapshot.Caption = "The van der Pol Equation";
diagram.SnapshotFormat = "svg";
diagram.Snapshot.Height = "4in";
getImpl(diagram,rpt)
close(rpt);

See Also
slreportgen.report.Reporter

Introduced in R2021a

 getImpl

8-103

slreportgen.report.RptFile.customizeReporter
Class: slreportgen.report.RptFile
Package: slreportgen.report

Create custom Report Explorer-based reporter class

Syntax
reporter = slreportgen.report.RptFile.customizeReporter(classpath)

Description
reporter = slreportgen.report.RptFile.customizeReporter(classpath) creates a
Report Explorer-based reporter (RptFile) class definition file that is a subclass of
slreportgen.report.RptFile. The file is created at the specified classpath location. The
RptFile.customizeReporter method also copies the default RptFile templates to the
<classpath>/resources/template folder. You can use the new class definition file as a starting
point to design a custom Report Explorer-based reporter class for your report.

Input Arguments
classpath — Location of custom Report Explorer-based reporter class
current working folder (default) | string | character array

Location of custom Report Explorer-based reporter class, specified as a string or character array. The
classpath argument also supports specifying a folder with @ before the class name.

Output Arguments
reporter — Report Explorer-based reporter path
string

Report Explorer-based reporter path, returned as a string specifying the path to the derived report
class file.

Examples
Create Custom Report Explorer-based Reporter

Create a custom Report Explorer-based reporter and its associated default templates. In this
example, the derived class file is created at the specified path under the current working folder. In
this example, the path to the MyRptExplRptr.m class file is <current working folder>/
new_rptexpl_rptr/@MyRptExplRptr/MyRptExplRptr.m. The default RptFile templates are in
the <current working folder>/new_rptexpl_rptr/@RptExplRptr/resources/templates
folder.

import slreportgen.report.*
RptFile.customizeReporter('new_rptexpl_rptr/@MyRptExplRptr');

8 Functions

8-104

After editing this new class file, you can use it as your RptFile reporter.

rptr = MyRptExplRptr();

See Also
slreportgen.report.RptFile | slreportgen.report.Report

Introduced in R2019a

 slreportgen.report.RptFile.customizeReporter

8-105

slreportgen.report.RptFile.getClassFolder
Class: slreportgen.report.RptFile
Package: slreportgen.report

Report Explorer-based reporter class definition file location

Syntax
path = slreportgen.report.RptFile.getClassFolder()

Description
path = slreportgen.report.RptFile.getClassFolder() returns the path of the folder that
contains the Report Explorer-based reporter class definition file.

Output Arguments
path — Report Explorer-based reporter class definition file location
character array

Report Explorer-based reporter class definition file location, returned as a character array.

See Also
slreportgen.report.RptFile | slreportgen.report.Report

Introduced in R2019a

8 Functions

8-106

slreportgen.report.Signal.createTemplate
Class: slreportgen.report.Signal
Package: slreportgen.report

Create signal reporter template

Syntax
template = slreportgen.report.Signal.createTemplate(templatePath,type)

Description
template = slreportgen.report.Signal.createTemplate(templatePath,type) creates a
copy of the slreportgen.report.Signal reporter template for the report type specified by type
at the location specified by templatePath. You can use the copied template as a starting point to
design a custom signal reporter template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the copy of the template, returned as a string scalar. The file name extension of
the template is based on the specified template type. For example, if the type argument is 'pdf',
the file name extension is .pdftx.

Examples

Create a Signal Reporter Template

Create a copy of the HTML template for the slreportgen.report.Signal reporter and save it
with the name mySignalTemplate in the mytemplates folder.

template = slreportgen.report.Signal.createTemplate...
 ('mytemplates/mySignalTemplate','html');

 slreportgen.report.Signal.createTemplate

8-107

After you modify the template, you can use it by setting the TemplateSrc property of a Signal
reporter to the path of the template file.

See Also
slreportgen.report.Report | slreportgen.report.Signal

Introduced in R2021a

8 Functions

8-108

slreportgen.report.Signal.customizeReporter
Class: slreportgen.report.Signal
Package: slreportgen.report

Create subclass of slreportgen.report.Signal class

Syntax
reporter = slreportgen.report.Signal.customizeReporter(classpath)

Description
reporter = slreportgen.report.Signal.customizeReporter(classpath) creates a
reporter class definition file that defines a subclass of slreportgen.report.Signal at the location
specified by classpath. The method also copies the default reporter templates to the resources/
templates subfolder of the folder that contains the class definition file. You can use the class
definition file as a starting point to design a custom signal reporter class for your report.

Input Arguments
classpath — Path and name of new class definition file
string scalar | character vector

Path and name of the new class definition file, specified as a string scalar or character vector.

You can specify a relative path or an absolute path. For example, this code creates MyClass.m in the
subfolder myFolder of the current folder.

slreportgen.report.Signal.customizeReporter("myFolder/MyClass")

To create the reporter class in a class folder, precede the class name with the @ character. Do not
specify the .m extension. For example, this code creates MyClass.m in the subfolder myFolder/
@MyClass in the current folder.
slreportgen.report.Signal.customizeReporter("myFolder/@MyClass")

See “Folders Containing Class Definitions”.

To create the reporter class in a class package, precede the folder name with the + character. For
example, this code creates a signal reporter in the myOrg package folder in the current folder.
slreportgen.report.Signal.customizeReporter("+myOrg/@MyClass")

Output Arguments
reporter — Path and file name of new reporter class
string scalar

Path and file name of the new reporter class, returned as a string scalar.

 slreportgen.report.Signal.customizeReporter

8-109

Examples

Create Custom Signal Reporter

Create a custom signal reporter, mySignal, and the associated default templates in the subfolder
MyFolder of the current working folder.

slreportgen.report.Signal.customizeReporter("MyFolder/mySignal")

ans =

 "MyFolder\mySignal.m"

See Also
slreportgen.report.Report | slreportgen.report.Signal

Introduced in R2021a

8 Functions

8-110

slreportgen.report.Signal.getClassFolder
Class: slreportgen.report.Signal
Package: slreportgen.report

Get location of folder that contains slreportgen.report.Signal class definition file

Syntax
path = slreportgen.report.Signal.getClassFolder()

Description
path = slreportgen.report.Signal.getClassFolder() returns the path of the folder that
contains the slreportgen.report.Signal class definition file.

Output Arguments
path — slreportgen.report.Signal class definition file location
character vector

slreportgen.report.Signal class definition file location, returned as a character vector.

Examples

Get Signal Reporter Class Folder

Get the location of the folder that contains the signal reporter class definition file.

path = slreportgen.report.Signal.getClassFolder()

See Also
slreportgen.report.Report | slreportgen.report.Signal

Introduced in R2021a

 slreportgen.report.Signal.getClassFolder

8-111

slreportgen.report.SimulinkObjectProperties.creat
eTemplate
Class: slreportgen.report.SimulinkObjectProperties
Package: slreportgen.report

Create Simulink object properties reporter template

Syntax
template = slreportgen.report.SimulinkObjectProperties.createTemplate(
templatePath,type)
output_args = createTemplate(input_args,Name,Value)

Description
template = slreportgen.report.SimulinkObjectProperties.createTemplate(
templatePath,type) creates a copy of the default Simulink object properties template specified by
type at the location specified by templatePath. To design a custom Simulink object properties
template for your report, use the copied template as a starting point t.

output_args = createTemplate(input_args,Name,Value) <verb phase> with additional
options specified by one or more Name,Value pair arguments.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the copy of the template, returned as a string scalar. The file name extension of
the template is based on the specified template type. For example, if the type argument is 'pdf',
the file name extension is .pdftx.

8 Functions

8-112

Examples
Create a Report Template

Create a copy of the HTML template for the slreportgen.report.SimulinkObjectProperties
reporter and save it with the name mySimulinkObjectPropertiesTemplate in the mytemplates
folder.

template = slreportgen.report.SimulinkObjectProperties.createTemplate...
 ('mytemplates\mySimulinkObjectPropertiesTemplate','html');

See Also
slreportgen.report.SimulinkObjectProperties

Topics
“Modify Styles in a Microsoft Word Template”
“Modify Styles in HTML Templates”
“Modify Styles in PDF Templates”

Introduced in R2017b

 slreportgen.report.SimulinkObjectProperties.createTemplate

8-113

slreportgen.report.SimulinkObjectProperties.custo
mizeReporter
Class: slreportgen.report.SimulinkObjectProperties
Package: slreportgen.report

Create custom Simulink object properties class

Syntax
reporter = slreportgen.report.SimulinkObjectProperties.customizeReporter(
classpath)

Description
reporter = slreportgen.report.SimulinkObjectProperties.customizeReporter(
classpath) creates a Simulink object properties page class definition file that is a subclass of
slreportgen.report.SimulinkObjectProperties. The file is created at the specified
classpath location. The SimulinkObjectProperties.customizeReporter method also copies
the default Simulink object properties templates to the <classpath>/resources/template folder.
To design a custom Simulink object properties class for your report, use the new class definition file
as a starting point.

Input Arguments
classpath — Location of custom Simulink object properties class
current working folder (default) | string | character array

Location of custom Simulink object properties class, specified as a string or character array. The
classpath argument also supports specifying a folder with @ before the class name.

Output Arguments
reporter — Simulink object properties reporter path
string

Simulink object properties reporter path, returned as the string specifying the path to the derived
report class file.

Simulink object properties

Examples
Create Custom Simulink Object Properties Reporter

Create a custom Simulink object properties reporter and its associated default templates. The derived
class file is created at the specified path relative to the current working folder. In this case, the path
to the MySFObjProps.m class file is <current working folder>/newSFObjProps/

8 Functions

8-114

@MySFObjProps/MySFObjProps.m. The default title page templates are in the <current working
folder>/newTitlePage/@MySFObjProps/resources/templates folder.

import slreportgen.report.*
StateflowObjectProperties.customizeReporter...
 ('newSFObjProps/@MySFObjProps');

After editing this new class file, you can use it as your Simulink object properties reporter.

objprop = MySFObjProps();

See Also
slreportgen.report.SimulinkObjectProperties | slreportgen.report.Report

Introduced in R2017b

 slreportgen.report.SimulinkObjectProperties.customizeReporter

8-115

slreportgen.report.SimulinkObjectProperties.getCl
assFolder
Class: slreportgen.report.SimulinkObjectProperties
Package: slreportgen.report

Simulink object properties class definition file location

Syntax
path =
getClassFolderslreportgen.report.SimulinkObjectProperties.getClassFolder()

Description
path =
getClassFolderslreportgen.report.SimulinkObjectProperties.getClassFolder()
returns the path of the folder that contains the Simulink object properties class definition file.

Output Arguments
path — Simulink object properties class definition file location
character array

Simulink object properties class definition file location, returned as a character array.

See Also
slreportgen.report.SimulinkObjectProperties | slreportgen.report.Report

Introduced in R2017b

8 Functions

8-116

slreportgen.report.StateflowObjectProperties.crea
teTemplate
Class: slreportgen.report.StateflowObjectProperties
Package: slreportgen.report

Create Stateflow object properties reporter template

Syntax
template = slreportgen.report.StateflowObjectProperties.createTemplate(
templatePath,type)

Description
template = slreportgen.report.StateflowObjectProperties.createTemplate(
templatePath,type) creates a copy of the default Stateflow object properties template specified
by type at the location specified by templatePath. Use the copied template as a starting point to
design a custom Stateflow object properties template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the copy of the template, returned as a string scalar. The file name extension of
the template is based on the specified template type. For example, if the type argument is 'pdf',
the file name extension is .pdftx.

Examples
Create a Report Template

Create a copy of the HTML template for the
slreportgen.report.StateflowObjectProperties reporter and save it with the name
myStateflowObjectPropertiesTemplate in the mytemplates folder.

 slreportgen.report.StateflowObjectProperties.createTemplate

8-117

template = slreportgen.report.StateflowObjectProperties.createTemplate...
 ('mytemplates\myStateflowObjectPropertiesTemplate','html');

See Also
slreportgen.report.StateflowObjectProperties

Introduced in R2017b

8 Functions

8-118

slreportgen.report.StateflowObjectProperties.cust
omizeReporter
Class: slreportgen.report.StateflowObjectProperties
Package: slreportgen.report

Create custom Stateflow object properties class

Syntax
reporter = slreportgen.report.StateflowObjectProperties.customizeReporter(
classpath)

Description
reporter = slreportgen.report.StateflowObjectProperties.customizeReporter(
classpath) creates a Stateflow object properties page class definition file that is a subclass of
slreportgen.report.SimulinkObjectProperties. The file is created at the specified
classpath location. The SimulinkObjectProperties.customizeReporter method also copies
the default Stateflow object properties templates to the <classpath>/resources/template
folder. To design a custom Stateflow object properties class for your report, use the new class
definition file as a starting point.

Input Arguments
classpath — Location of custom Stateflow object properties class
current working folder (default) | string | character array

Location of custom Stateflow object properties class, specified as a string or character array. The
classpath argument also supports specifying a folder with @ before the class name.

Output Arguments
reporter — Stateflow object properties reporter path
string

Stateflow object properties reporter path, returned as the string specifying the path to the derived
report class file.

Examples
Create Custom Stateflow Object Properties Reporter

Create a custom Stateflow object properties reporter and its associated default templates. The
derived class file is created at the specified path relative to the current working folder. In this case,
the path to the MySFObjProps.m class file is <current working folder>/newSFObjProps/
@MySFObjProps/MySFObjProps.m. The default title page templates are in the <current working
folder>/newTitlePage/@MySFObjProps/resources/templates folder.

 slreportgen.report.StateflowObjectProperties.customizeReporter

8-119

import slreportgen.report.*
StateflowObjectProperties.customizeReporter...
 ('newSFObjProps/@MySFObjProps');

After editing this new class file, you can use it as your Stateflow object properties reporter.

objprop = MySFObjProps();

See Also
slreportgen.report.StateflowObjectProperties | slreportgen.report.Report

Introduced in R2017b

8 Functions

8-120

slreportgen.report.StateflowObjectProperties.getC
lassFolder
Class: slreportgen.report.StateflowObjectProperties
Package: slreportgen.report

Stateflow object properties class definition file location

Syntax
path = slreportgen.report.StateflowObjectProperties.getClassFolder()

Description
path = slreportgen.report.StateflowObjectProperties.getClassFolder() returns the
path of the folder that contains the Stateflow object properties class definition file.

Output Arguments
path — Stateflow object properties class definition file location
character array

Stateflow object properties class definition file location, returned as a character array.

See Also
slreportgen.report.StateflowObjectProperties | slreportgen.report.Report

Introduced in R2017b

 slreportgen.report.StateflowObjectProperties.getClassFolder

8-121

slreportgen.report.SystemHierarchy.createTemplat
e
Class: slreportgen.report.SystemHierarchy
Package: slreportgen.report

Create system hierarchy reporter template

Syntax
template = slreportgen.report.SystemHierarchy.createTemplate(templatePath,
type)

Description
template = slreportgen.report.SystemHierarchy.createTemplate(templatePath,
type) creates a copy of the slreportgen.report.SystemHierarchy reporter template for the
report type specified by type at the location specified by templatePath. You can use the copied
template as a starting point to design a custom system hierarchy template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the copy of the template, returned as a string scalar. The file name extension of
the template is based on the specified template type. For example, if the type argument is 'pdf',
the file name extension is .pdftx.

Examples

Create a System Hierarchy Reporter Template

Create a copy of the HTML template for the system hierarchy reporter and save it with the name
mySysHierarchyTemplate in the mytemplates folder.

8 Functions

8-122

template = slreportgen.report.SystemHierarchy.createTemplate...
 ('mytemplates/mySysHierarchyTemplate','html');

After you modify the template, you can use it by setting the TemplateSrc property of the reporter.

See Also
slreportgen.report.SystemHierarchy | slreportgen.report.Report

Introduced in R2019b

 slreportgen.report.SystemHierarchy.createTemplate

8-123

slreportgen.report.SystemHierarchy.customizeRep
orter
Class: slreportgen.report.SystemHierarchy
Package: slreportgen.report

Create custom system hierarchy reporter class

Syntax
reporter = slreportgen.report.SystemHierarchy.customizeReporter(classpath)

Description
reporter = slreportgen.report.SystemHierarchy.customizeReporter(classpath)
creates a class definition file that defines a subclass of slreportgen.report.SystemHierarchy
at the location specified by classpath. This method also copies the default reporter templates to the
resources/templates subfolder of the folder that contains the class definition file. You can use the
class definition file as a starting point to design a custom system hierarchy reporter class for your
report.

Input Arguments
classpath — Path and name of new class definition file
string scalar | character vector

Path and name of new class definition file, specified as a string scalar or character vector.

You can specify a relative path or an absolute path. For example, this code creates MyClass.m in the
subfolder myFolder of the current folder.

slreportgen.report.SystemHierarchy.customizeReporter("myFolder/MyClass")

To create the reporter class in a class folder, precede the class name with the @ character. Do not
specify the .m extension. For example, this code creates MyClass.m in the subfolder myFolder/
@MyClass of the current folder.
slreportgen.report.SystemHierarchy.customizeReporter("myFolder/@MyClass")

See “Folders Containing Class Definitions”.

To create the reporter class in a class package, precede the folder name with the + character. For
example, this code creates a system hierarchy reporter in the myOrg package folder in the current
folder.
slreportgen.report.SystemHierarchy.customizeReporter("+myOrg/@SystemHierarchy");

Output Arguments
reporter — Path to new system hierarchy reporter class
string scalar

8 Functions

8-124

Path and file name of the new system hierarchy reporter class, returned as a string scalar.

Examples

Create Custom System Hierarchy Reporter Class

Create a custom system hierarchy reporter class, MySystemHierarchy, and its associated default
templates in the subfolder MyFolder of the current working folder.

slreportgen.report.SystemHierarchy.customizeReporter('MyFolder/MySystemHierarchy')

ans =

 "MyFolder\MySystemHierarchy.m"

After editing this new class file, you can use it as your system hierarchy reporter.

rptr = MySystemHierarchy;

See Also
slreportgen.report.SystemHierarchy | slreportgen.report.Report

Introduced in R2019b

 slreportgen.report.SystemHierarchy.customizeReporter

8-125

slreportgen.report.SystemHierarchy.getClassFolde
r
Class: slreportgen.report.SystemHierarchy
Package: slreportgen.report

Get location of system hierarchy reporter class definition file

Syntax
path = slreportgen.report.SystemHierarchy.getClassFolder()

Description
path = slreportgen.report.SystemHierarchy.getClassFolder() returns the path of the
folder that contains the slreportgen.report.SystemHierarchy class definition file.

Output Arguments
path — Location of the system hierarchy reporter class definition file
character vector

Location of the slreportgen.report.SystemHierarchy class definition file, returned as a
character vector.

Examples

Get System Hierarchy Reporter Class Folder

Get the location of the folder that contains the system hierarchy reporter class definition.

path = slreportgen.report.SystemHierarchy.getClassFolder()

See Also
slreportgen.report.SystemHierarchy | slreportgen.report.Report

Introduced in R2019b

8 Functions

8-126

slreportgen.report.SystemIO.createTemplate
Class: slreportgen.report.SystemIO
Package: slreportgen.report

Copy the default slreportgen.report.SystemIO reporter template

Syntax
template = slreportgen.report.SystemIO.createTemplate(templatePath,type)

Description
template = slreportgen.report.SystemIO.createTemplate(templatePath,type)
creates a copy of the slreportgen.report.SystemIO reporter template for the report type
specified by type at the location specified by templatePath. You can use the copy of the template
as a starting point to design a custom slreportgen.report.SystemIO template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the copy of the template, returned as a string scalar. The file name extension of
the template is based on the specified template type. For example, if the type argument is 'pdf',
the file name extension is .pdftx.

Examples

Create a System Input and Output Reporter Template

Create a copy of the HTML template for the slreportgen.report.SystemIO reporter and save it
with the name mySystemIOTemplate in the mytemplates folder.

template = slreportgen.report.SystemIO.createTemplate...
 ('mytemplates/mySystemIOTemplate','html');

 slreportgen.report.SystemIO.createTemplate

8-127

After you modify the template, you can use it by setting the TemplateSrc property of the reporter.

See Also
slreportgen.report.Report | slreportgen.report.SystemIO

Introduced in R2020a

8 Functions

8-128

slreportgen.report.SystemIO.customizeReporter
Class: slreportgen.report.SystemIO
Package: slreportgen.report

Create subclass of slreportgen.report.SystemIO class

Syntax
reporter = slreportgen.report.SystemIO.customizeReporter(classpath)

Description
reporter = slreportgen.report.SystemIO.customizeReporter(classpath) creates a
reporter class definition file that defines a subclass of slreportgen.report.SystemIO at the
location specified by classpath. The method also copies the default reporter templates to the
resources/templates subfolder of the folder that contains the class definition file. You can use the
class definition file as a starting point to design a custom system input and output reporter class for
your report.

Input Arguments
classpath — Path and name of new class definition file
string scalar | character vector

Path and name of new class definition file, specified as a string scalar or character vector.

You can specify a relative path or an absolute path. For example, this code creates MyClass.m in the
subfolder myFolder of the current folder.

slreportgen.report.SystemIO.customizeReporter("myFolder/MyClass")

To create the reporter class in a class folder, precede the class name with the @ character. Do not
specify the .m extension. For example, this code creates MyClass.m in the subfolder myFolder/
@MyClass in the current folder.
slreportgen.report.SystemIO.customizeReporter("myFolder/@MyClass")

See “Folders Containing Class Definitions”.

To create the reporter class in a class package, precede the folder name with the + character. For
example, this code creates a system input and output reporter in the myOrg package folder in the
current folder.
slreportgen.report.SystemIO.customizeReporter("+myOrg/@MyClass")

Output Arguments
reporter — Path and file name of new reporter class
string scalar

Path and file name of the new reporter class, returned as a string scalar.

 slreportgen.report.SystemIO.customizeReporter

8-129

Examples

Create Custom System Input and Output Reporter

Create a custom system input and output reporter, mySystemIO, and the associated default
templates in the subfolder MyFolder of the current working folder.

slreportgen.report.SystemIO.customizeReporter('MyFolder/mySystemIO')

ans =

 "MyFolder\mySystemIO.m"

See Also
slreportgen.report.Report | slreportgen.report.SystemIO

Introduced in R2020a

8 Functions

8-130

slreportgen.report.SystemIO.getClassFolder
Class: slreportgen.report.SystemIO
Package: slreportgen.report

Get location of folder that contains the slreportgen.report.SystemIO class definition file

Syntax
path = slreportgen.report.SystemIO.getClassFolder()

Description
path = slreportgen.report.SystemIO.getClassFolder() returns the path of the folder that
contains the slreportgen.report.SystemIO class definition file.

Output Arguments
path — slreportgen.report.SystemIO class definition file location
character vector

slreportgen.report.SystemIO class definition file location, returned as a character vector.

Examples

Get System Input and Output Reporter Class Folder

Get the location of the folder that contains the system input and output reporter class definition.

path = slreportgen.report.SystemIO.getClassFolder()

See Also
slreportgen.report.Report | slreportgen.report.SystemIO

Introduced in R2020a

 slreportgen.report.SystemIO.getClassFolder

8-131

slreportgen.report.TestSequence.createTemplate
Class: slreportgen.report.TestSequence
Package: slreportgen.report

Create Test Sequence block reporter template

Syntax
template = slreportgen.report.TestSequence.createTemplate(templatePath,type)

Description
template = slreportgen.report.TestSequence.createTemplate(templatePath,type)
creates a copy of the slreportgen.report.TestSeqeunce reporter template for the report type
specified by type at the location specified by templatePath. You can use the copied template as a
starting point to design a custom Test Sequence block reporter template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the copy of the template, returned as a string scalar. The file name extension of
the template is based on the specified template type. For example, if the type argument is 'pdf',
the file name extension is .pdftx.

Examples

Create a Test Sequence Block Reporter Template

Create a copy of the HTML template for the slreportgen.report.TestSequence reporter and
save it with the name myTestSequenceTemplate in the mytemplates folder.

template = slreportgen.report.TestSequence.createTemplate...
 ('mytemplates/myTestSequenceTemplate','html');

8 Functions

8-132

After you modify the template, you can use it by setting the TemplateSrc property of a
TestSequence reporter to the path of the template file.

See Also
slreportgen.report.TestSequence

Introduced in R2020b

 slreportgen.report.TestSequence.createTemplate

8-133

slreportgen.report.TestSequence.customizeReport
er
Class: slreportgen.report.TestSequence
Package: slreportgen.report

Create custom Test Sequence block reporter class

Syntax
reporter = slreportgen.report.TestSequence.customizeReporter(classpath)

Description
reporter = slreportgen.report.TestSequence.customizeReporter(classpath) creates
a class definition file that defines a subclass of slreportgen.report.TestSequence at the
location specified by classpath. This method also copies the default reporter templates to the
resources/templates subfolder of the folder that contains the class definition file. You can use the
class definition file as a starting point to design a custom Test Sequence block reporter class for your
report.

Input Arguments
classpath — Path and name of new class definition file
string scalar | character vector

Path and name of new class definition file, specified as a string scalar or character vector.

You can specify a relative path or an absolute path. For example, this code creates MyClass.m in the
subfolder myFolder of the current folder.

slreportgen.report.TestSequence.customizeReporter("myFolder/MyClass")

To create the reporter class in a class folder, precede the class name with the @ character. Do not
specify the .m extension. For example, this code creates MyClass.m in the subfolder myFolder/
@MyClass in the current folder.

slreportgen.report.TestSequence.customizeReporter("myFolder/@MyClass")

See “Folders Containing Class Definitions”.

To create the reporter class in a class package, precede the folder name with the + character. For
example, this code creates a Test Sequence block reporter in the myOrg package folder in the current
folder.
slreportgen.report.TestSequence.customizeReporter("+myOrg/@MyClass");

Output Arguments
reporter — Path and file name of new Test Sequence block reporter class
string scalar

8 Functions

8-134

Path and file name of the new Test Sequence block reporter class, returned as a string scalar.

Examples

Create Custom Test Sequence Block Reporter

Create a custom Test Sequence block reporter, MyTestSequence, and its associated default
templates in the subfolder MyFolder of the current working folder.

slreportgen.report.TestSequence.customizeReporter('MyFolder/MyTestSequence')

ans =

 "MyFolder\MyTestSequnce.m"

See Also
slreportgen.report.TestSequence

Introduced in R2020b

 slreportgen.report.TestSequence.customizeReporter

8-135

slreportgen.report.TestSequence.getClassFolder
Class: slreportgen.report.TestSequence
Package: slreportgen.report

Get location of Test Sequence block reporter class definition file

Syntax
path = slreportgen.report.TestSequence.getClassFolder()

Description
path = slreportgen.report.TestSequence.getClassFolder() returns the path of the folder
that contains the slreportgen.report.TestSequence class definition file.

Output Arguments
path — Location of the Test Sequence block reporter class definition file
character vector

Location of the slreportgen.report.TestSequence class definition file, returned as a character
vector.

Examples

Get Test Sequence Block Reporter Class Folder

Get the folder that contains the Test Sequence block reporter class definition.

path = slreportgen.report.TestSequence.getClassFolder()

See Also
slreportgen.report.TestSequence

Introduced in R2020b

8 Functions

8-136

slreportgen.report.TruthTable.createTemplate
Class: slreportgen.report.TruthTable
Package: slreportgen.report

Create truth table template

Syntax
template = slreportgen.report.TruthTable.createTemplate(templatePath,type)

Description
template = slreportgen.report.TruthTable.createTemplate(templatePath,type)
creates a copy of the default TruthTable reporter template specified by type at the location
specified by templatePath. To design a custom truth table template for your report, use the copied
template as a starting point.

Input Arguments
templatePath — Location of reporter template
string | character vector | character array | template source object

Location of the reporter template, specified as a character vector, character array, or template source
object.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Template name
string

Name of template, returned as the path and file name of the template. The template file name
extension is assigned based on the specified output type. For example, for PDF output, the template
name has a .pdftx file extension.

Examples
Create a Truth Table Template

template = slreportgen.report.TruthTable.createTemplate...
 ('mytemplates\myTruthTable','html');

See Also
slreportgen.report.Report | slreportgen.report.TruthTable

 slreportgen.report.TruthTable.createTemplate

8-137

Introduced in R2018b

8 Functions

8-138

slreportgen.report.TruthTable.customizeReporter
Class: slreportgen.report.TruthTable
Package: slreportgen.report

Create custom truth table reporter class

Syntax
customRptrPath = slreportgen.report.TruthTable.customizeReporter(classpath)

Description
customRptrPath = slreportgen.report.TruthTable.customizeReporter(classpath)
creates an empty truth table class definition file that is a subclass of
slreportgen.report.TruthTable. The file is created at the specified classpath location. The
customizeReporter method also copies the default truth table templates to the <classpath>/
resources/template folder. To design a custom truth table class for your report, you can use the
new class definition file as a starting point.

Input Arguments
classpath — Location of custom truth table class
current working folder (default) | string | character array

Location of custom truth table class, specified as a string or character array. The classpath
argument also supports specifying a folder with @ before the class name. For example, both of these
paths are valid:

• slreportgen.report.TruthTable.customizeReporter("path_folder/MyClassA.m")
• slreportgen.report.TruthTable.customizeReporter("+package/@MyClassB")

Output Arguments
customRptrPath — Path of custom truth table reporter
string

Path of the class definition file that defines the custom truth table reporter, specified as a string.

Examples
Create Custom Truth Table Reporter

Create a custom TruthTable reporter and its associated default templates. The derived class file is
created at the specified path relative to the current working folder. In this case, the path to the
MyTruthTable.m class file is <current working folder>/newTruthTable/@MyTruthTable/
MyTruthTable.m. The default diagram templates are in the <current working folder>/
newTruthTable/@MyTruthTable/resources/templates folder.

slreportgen.report.TruthTable.customizeReporter('newTruthTable/@MyTruthTable');

 slreportgen.report.TruthTable.customizeReporter

8-139

See Also
slreportgen.report.Report | slreportgen.report.TruthTable

Introduced in R2018b

8 Functions

8-140

slreportgen.report.TruthTable.getClassFolder
Class: slreportgen.report.TruthTable
Package: slreportgen.report

Location of truth table class definition file

Syntax
path = slreportgen.report.TruthTable.getClassFolder()

Description
path = slreportgen.report.TruthTable.getClassFolder() returns the path of the folder
that contains the truth table class definition file.

Output Arguments
path — Truth table class definition file location
character array

Truth table class definition file location, returned as a character array.

See Also
slreportgen.report.Report | slreportgen.report.TruthTable

Introduced in R2018b

 slreportgen.report.TruthTable.getClassFolder

8-141

slreportgen.utils.block2chart
Package: slreportgen.utils

Get Stateflow chart object from containing block

Syntax
charts = slreportgen.utils.block2chart(subsystems)

Description
charts = slreportgen.utils.block2chart(subsystems) returns an array of Stateflow chart
objects that are contained in the specified subsystems.

Examples
Obtain Chart Object

load_system("slrgex_fuelsys_fuel_rate_control")
slreportgen.utils.block2chart...
 ("slrgex_fuelsys_fuel_rate_control/control_logic")

Input Arguments
subsystems — Subsystem blocks
array of subsystem block handles | array of paths to subsystem blocks

Subsystem blocks, specified as an array of subsystem block handles or an array of handles or paths to
the subsystem blocks.

Output Arguments
charts — Stateflow chart objects
array of Stateflow chart objects

Stateflow chart objects, returned as an array. The returned Stateflow charts are contained in the
specified subsystems.

See Also
slreportgen.utils.getSlSfHandle

Introduced in R2018b

8 Functions

8-142

slreportgen.utils.compileModel
Package: slreportgen.utils

Compile model

Syntax
slreportgen.utils.compileModel(modelname)

Description
slreportgen.utils.compileModel(modelname) compiles the model specified in the
modelname input. If modelname is a Simulink block or Stateflow object, the model that contains the
block or object is compiled.

Input Arguments
modelname — Model to compile
character array | string

Model to compile, specified as a character array or string of the model handle, block handle, or
Stateflow object. If modelname is an element in the model or chart, this utility compiles the
containing model or chart.

See Also
slreportgen.utils.isModelCompiled | slreportgen.utils.uncompileModel

Introduced in R2018b

 slreportgen.utils.compileModel

8-143

slreportgen.utils.getCurrentEditorView
Get current editor view area

Syntax
viewArea = slreportgen.utils.getCurrentEditorView()

Description
viewArea = slreportgen.utils.getCurrentEditorView() returns the current Simulink
Editor view area as a 1-by-4 array of doubles. The first two values of the array are the x and y
coordinates, in pixels, of the top left corner of the diagram area in the Simulink Editor coordinate
space. The last two values are the width and height, in pixels.

Examples

Take a Snapshot of the Current Editor View

This example creates an slreportgen.report.Diagram reporter that takes a snapshot of the
current editor view.

Open a model in Simulink.

f14

In the Simulink Editor, zoom in on the area of the diagram that you want to capture in the report.

Set up the report and create an slreportgen.report.Diagram reporter to take a snapshot of the
top-level diagram. Specify that you want to capture the current editor view in the diagram snapshot.

import slreportgen.report.*
import slreportgen.utils.*

rpt = Report('output','pdf');

diag = Diagram('f14');
diag.SnapshotArea = getCurrentEditorView();
add(rpt,diag);

close(rpt);
rptview(rpt);

See Also
slreportgen.report.Diagram

Introduced in R2020a

8 Functions

8-144

slreportgen.utils.getDisplayIcon
Package: slreportgen.utils

Get Simulink or Stateflow icon file name

Syntax
displayIcon = slreportgen.utils.getDisplayIcon(obj)

Description
displayIcon = slreportgen.utils.getDisplayIcon(obj) returns the icon image file name
for a Simulink handle or Stateflow object.

Examples
Get Icon Path for Stateflow Chart

load_system('slrgex_sf_car')
chart = find(slroot,'-isa',...
 'Stateflow.Chart','Name','shift_logic');
iconPath = slreportgen.utils.getDisplayIcon(chart);

Input Arguments
obj — Simulink or Stateflow object
string | character array

Simulink handle or Stateflow object, specified as a string or character array of its path or handle.

Output Arguments
displayIcon — Icon image file name
string

Icon image file name, returned as a string.

See Also

Introduced in R2018b

 slreportgen.utils.getDisplayIcon

8-145

slreportgen.utils.getModelHandle
Package: slreportgen.utils

Get Simulink model

Syntax
modelHandle = slreportgen.utils.getModelHandle(obj)

Description
modelHandle = slreportgen.utils.getModelHandle(obj) returns the handle of a Simulink
model or Stateflow object.

Examples
Obtain Simulink Model Handle
load_system('f14')
modelHandle_blk = slreportgen.utils.getModelHandle('f14/Controller')

modelHandle_blk =

 2.0002

Obtain Stateflow Chart Handle
load_system('slrgex_sf_car');
chart = find(slroot,'-isa',...
 'Stateflow.Chart','Name','shift_logic');
chart_handle = slreportgen.utils.getModelHandle(chart);

Input Arguments
obj — Simulink or Stateflow object
string | character array

Simulink or Stateflow object, specified as a string or character array of the object path or object
handle. This utility returns the handle of the specified model or chart. If you specify an element in the
model or chart, this utility returns the handle of the containing model or chart.

Output Arguments
modelHandle — Model handle
double

Model handle, returned as a double.

See Also
slreportgen.utils.getSlSfHandle

8 Functions

8-146

Introduced in R2018b

 slreportgen.utils.getModelHandle

8-147

slreportgen.utils.getObjectID
Package: slreportgen.utils

Generate link target ID for Simulink or Stateflow object

Syntax
id = slreportgen.utils.getObjectID(obj)
id = slreportgen.utils.getObjectID(obj,"Hash",false)

Description
id = slreportgen.utils.getObjectID(obj) generates a link target ID for the specified
Simulink or Stateflow object. The ID is hashed so that it does not exceed the 40-character limit
imposed on Microsoft Word bookmarks.

Note The slreportgen.report.Diagram and slreportgen.report.ElementDiagram
reporters use this utility to generate IDs for element hyperlinks in diagrams generated for HTML and
PDF reports. You can use this function to generate corresponding link targets for the diagram
elements.

To create a link target for a Truth Table block in a Simulink diagram, specify the Truth Table block
path and not the Stateflow.TruthTable object.

id = slreportgen.utils.getObjectID(obj,"Hash",false) does not hash the generated ID.

Examples
Obtain Object ID from Handle

load_system('f14')
modelHandle = slreportgen.utils.getSlSfHandle('f14');
objID = slreportgen.utils.getObjectID(modelHandle)

objID =

 '8bc7ba92e180202ffc5ce217625c6563'

Input Arguments
obj — Simulink or Stateflow object
object path | object handle

Simulink or Stateflow object, specified by its path or handle, for which to generate a link target ID.

8 Functions

8-148

Output Arguments
id — Simulink or Stateflow link target ID
character vector

Simulink or Stateflow link target ID, returned as a character vector. You use this character vector as
the anchor ID for linking.

See Also
mlreportgen.dom.LinkTarget | slreportgen.report.ElementDiagram |
slreportgen.report.Diagram

Introduced in R2018b

 slreportgen.utils.getObjectID

8-149

slreportgen.utils.getResolvedParamValue
Package: slrportgen.utils

Evaluate parameter value expression

Syntax
param_value = slreportgen.utils.getResolvedParamValue(block,parameter)

Description
param_value = slreportgen.utils.getResolvedParamValue(block,parameter) returns
the value of a block parameter. The value of the parameter is an evaluated MATLAB expression that
includes references to workspace variables. This utility produces an
slreportgen:UnresolvableExpression error if it cannot find expression variables in the
MATLAB or model workspace.

Examples
Obtain Parameter Value

load_system('f14')
numval = slreportgen.utils.getResolvedParamValue...
 ('f14/Actuator Model','Numerator')

numval =

 1

Input Arguments
block — Block name
string | character array

Block name, specified as a string or character array of the block name or block handle.

parameter — Block parameter name
string | character array

Block parameter name, specified as a string or character array.

Output Arguments
param_value — Value of block parameter
depends on block

Value of block parameter. The data type of the returned value depends on the specific parameter.

8 Functions

8-150

See Also
slreportgen.utils.traceSignal

Introduced in R2018b

 slreportgen.utils.getResolvedParamValue

8-151

slreportgen.utils.getSlSfHandle
Get Simulink handle or Stateflow object

Syntax
sisfhandle = slreportgen.utils.getSlSfHandle(path_id)

Description
sisfhandle = slreportgen.utils.getSlSfHandle(path_id) returns the Simulink or
Stateflow object handle of the input Simulink path, Simulink identifier (SID), or Stateflow numeric ID.

Examples
Obtain Simulink Model and Object Handles

load_system('f14')
modelHandle = slreportgen.utils.getSlSfHandle('f14')
blockHandle = slreportgen.utils.getSlSfHandle('f14/Controller')
SIDHandle = slreportgen.utils.getSlSfHandle('f14:3')

modelHandle =

 2.0001

blockHandle =

 38.0001

SIDHandle =

 6.0001

Obtain Stateflow Chart Handle

load_system('slrgex_sf_car')
chart = find(slroot, '-isa',...
 'Stateflow.Chart','Name','shift_logic');
slreportgen.utils.getSlSfHandle(chart.Id)

This example returns the list of Stateflow chart properties to the workspace. The Stateflow handle is
equivalent to the Stateflow object. To use a Stateflow handle, assign it to a variable.

Input Arguments
path_id — Simulink or Stateflow object path or ID
string | character array

Simulink or Stateflow object path or ID, specified as a string or character array. This utility returns
the handle of the specified path_id object.

8 Functions

8-152

Output Arguments
sisfhandle — Handle of object
double

Handle of the specified Simulink or Stateflow object, returned as a double.

See Also
getSimulinkBlockHandle | slreportgen.utils.getModelHandle

Introduced in R2018b

 slreportgen.utils.getSlSfHandle

8-153

slreportgen.utils.hasDiagram
Package: slreportgen.utils

Check if object has diagram

Syntax
tf = slreportgen.utils.hasDiagram(obj)

Description
tf = slreportgen.utils.hasDiagram(obj) returns 1 (true) if the input object has a diagram
and 0 (false) if the object does not have a diagram.

These types of objects have diagrams:

• Simulink block diagram
• Simulink graphical subsystem
• Stateflow chart
• Stateflow Simulink function
• Subcharted Stateflow state
• Subcharted Stateflow function
• Subcharted Stateflow box

You can use this function to check if an object has a diagram before you try to use the object with an
slreportgen.report.Diagram reporter.

Examples

Check Whether Object Has a Diagram

load_system('f14');
tf = slreportgen.utils.hasDiagram('f14/Aircraft Dynamics Model')

tf =

 logical

 1

Input Arguments
obj — Object to check
string scalar | character vector | handle

Object to check for a diagram, specified as a character vector or string scalar that contains the
Simulink path of the object or as a handle to the object.

8 Functions

8-154

Output Arguments
tf — Whether object has a diagram
1 (true) | 0 (false)

Whether the input object has a diagram, returned as 1 (true) if the input object has a diagram or 0
(false) if the input object does not have a diagram.

See Also
slreportgen.report.Diagram | slreportgen.utils.getModelHandle

Introduced in R2020b

 slreportgen.utils.hasDiagram

8-155

slreportgen.utils.isBusSelector
Package: slreportgen.utils

Check if Bus Selector block

Syntax
tf = slreportgen.utils.isBusSelector(obj)

Description
tf = slreportgen.utils.isBusSelector(obj) tests if the input obj is a Simulink Bus
Selector block.

Examples
Test If Object Is a Bus Selector

load_system('sldemo_fuelsys')
slreportgen.utils.isBusSelector...
 ("slrgex_fuelsys_fuel_rate_control/Bus Selector1")

tf =

 logical

 1

In this case, the Bus Selector1 block in the sldemo_fuelsys model is a Bus Selector block.

Input Arguments
obj — Input object to test for being a Bus Selector block
string | character array | object handle

Input object to test for being a Bus Selector block, specified as a string or character array of the
object path or handle.

Output Arguments
tf — Whether input is a Bus Selector block
true | false

Whether input is a Bus Selector block, returned as 1 (true) if the input is a Bus Selector. Otherwise, it
returns 0 (false).

See Also
Bus Selector

8 Functions

8-156

Introduced in R2019a

 slreportgen.utils.isBusSelector

8-157

slreportgen.utils.isCommented
Package: slreportgen.utils

Check if object is commented out

Syntax
tf = slreportgen.utils.isCommented(obj)

Description
tf = slreportgen.utils.isCommented(obj) tests whether the input Simulink or Stateflow
object is commented out.

Examples
Check If System Is Commented Out

load_system('slrgex_sf_car')
tf = slreportgen.utils.isCommented('slrgex_sf_car/Vehicle')

tf =

 logical

 0

In this case, the slrgex_sf_car model is not commented out.

Input Arguments
obj — Object to check for being commented out
string | character array

Simulink or Stateflow object to check for being commented out, specified as a string or character
array of the Simulink object path or handle or Stateflow object.

Output Arguments
tf — Whether input is a masked system
true | false

Whether input is a masked system, returned as 1 (true) if the input system is masked. Otherwise, it
returns 0 (false).

See Also

Introduced in R2018b

8 Functions

8-158

slreportgen.utils.isDocBlock
Package: slreportgen.utils

Check if DocBlock

Syntax
tf = slreportgen.utils.isDocBlock(obj)

Description
tf = slreportgen.utils.isDocBlock(obj) tests if the input obj is a Simulink DocBlock block.

Examples
Test If Object Is a DocBlock

load_system("slrgex_fuelsys")
tf = slreportgen.utils.isDocBlock ...
 ("slrgex_fuelsys/To Controller/Sensor Info")

tf =

 logical

 1

In this case, the Sensor Info block in the sldemo_fuelsys model is a DocBlock.

Input Arguments
obj — Object to test for being a DocBlock
string | character array | handle

Object to test for being a DocBlock, specified as a string or character array of the block path or
handle.

Output Arguments
tf — Whether input is a DocBlock
true | false

Whether input is a DocBlock, returned as 1 (true) if the input is a DocBlock. Otherwise, it returns 0
(false).

See Also
DocBlock

 slreportgen.utils.isDocBlock

8-159

Introduced in R2019a

8 Functions

8-160

slreportgen.utils.isLookupTable
Package: slreportgen.utils

Check if lookup table block

Syntax
tf = slreportgen.utils.isLookupTable(obj)

Description
tf = slreportgen.utils.isLookupTable(obj) tests whether the obj is a lookup table block.

These lookup table blocks are supported:

• 1-D Lookup Table
• 2-D Lookup Table
• n-D Lookup Table
• Interpolation Using Prelookup
• Direct Lookup Table (n-D)
• Lookup Table Dynamic

Examples

Test Whether Block Is a Lookup Table Block

Use isLookupTable to test whether a block is a type of lookup table block.

Find blocks in a container, such as a model, and obtain its results.

blkfinder = slreportgen.finder.BlockFinder(model_name);
results = find(blkfinder);

Then, loop through the results and test whether each block is a lookup table block. For each result
that is a lookup table block, create a LookupTable reporter, and add the reporter to the report.

for i=1:length(results)
 block = results(i).Object;
 if slreportgen.utils.isLookupTable(block)
 rptr = LookupTable(block);
 add(rpt,rptr);
 end
end

Input Arguments
obj — Simulink block to query
string | character array

 slreportgen.utils.isLookupTable

8-161

Simulink block to query for whether it is a lookup table block, specified as a string or character array
of its block path or handle.

Output Arguments
tf — Whether input is a lookup table block
true | false

Whether input is a lookup table block, returned as 1 (true) if the input is a lookup table block.
Otherwise, it returns 0 (false).

See Also
slreportgen.report.LookupTable | slreportgen.utils.isTruthTable

Introduced in R2018a

8 Functions

8-162

slreportgen.utils.isMaskedSystem
Package: slreportgen.utils

Check if system is masked subsystem block

Syntax
tf = isMaskedSystem(system)

Description
tf = isMaskedSystem(system) tests whether the input system is masked.

Examples
Check If System Is Masked

load_system('slrgex_sf_car')
tf = slreportgen.utils.isMaskedSystem('slrgex_sf_car/Vehicle')

tf =

 logical

 1

In this case, the slrgex_sf_car model is masked.

Input Arguments
system — System to check for masking
string | character array

System to check for masking, specified as a string or character array of the Simulink path or handle.

Output Arguments
tf — Whether input is a masked system
true | false

Whether input is a masked system, returned as 1 (true) if the input system is masked. Otherwise, it
returns 0 (false).

See Also
Topics
“Create Block Masks”

 slreportgen.utils.isMaskedSystem

8-163

Introduced in R2018b

8 Functions

8-164

slreportgen.utils.isMATLABFunction
Package: slreportgen.utils

Check if MATLAB function block or object

Syntax
tf = slreportgen.utils.isMATLABFunction(obj)

Description
tf = slreportgen.utils.isMATLABFunction(obj) tests whether the input obj is a Simulink
MATLAB Function block or a Stateflow MATLAB function object.

Examples

Test Whether Block Is a MATLAB Function Block

Use isMATLABFunction to test whether a block is a MATLAB Function block.

Find blocks in a container, such as a model, and obtain its results.

blkfinder = slreportgen.finder.BlockFinder(model_name);
results = find(blkfinder);

Then, loop through the results and test whether each block is a MATLAB Function block. For each
result that is a MATLAB Function block, create a MATLABFunction reporter, and add the reporter to
the report.

for i=1:length(results)
 block = results(i).Object;
 if slreportgen.utils.isMATLABFunction(block)
 rptr = MATLABFunction(block);
 add(myReport,rptr);
 end
end

Input Arguments
obj — Object to check for being a MATLAB Function block
string | character array

Simulink element or Stateflow object to check for being a MATLAB Function block, specified as a
string or character array of the path or handle.

Output Arguments
tf — Whether input is a MATLAB Function block or object
true | false

 slreportgen.utils.isMATLABFunction

8-165

Whether input is a MATLAB Function block or object, returned as 1 (true) if the input is a MATLAB
Function or object. Otherwise, it returns 0 (false).

See Also
slreportgen.report.MATLABFunction

Introduced in R2018a

8 Functions

8-166

slreportgen.utils.isModel
Package: slreportgen.utils

Check if object is model

Syntax
tf = slreportgen.utils.isModel(obj)

Description
tf = slreportgen.utils.isModel(obj) returns 1 (true) if the input object is a Simulink model
and 0 (false) if the object is not a model.

Examples

Check Whether Object is a Model

load_system("slrgex_vdp");
tf = slreportgen.utils.isModel("slrgex_vdp")

tf =

 logical

 1

Input Arguments
obj — Object to check
handle | string scalar | character vector | handle

Object to check, specified as a handle to the object or as a character vector or string scalar that
contains the Simulink path of the object.

Output Arguments
tf — Whether object is a model
1 (true) | 0 (false)

Whether the input object is a model, returned as 1 (true) if the input object is a model or 0 (false)
if the input object is not a model.

See Also
slreportgen.utils.getModelHandle | slreportgen.utils.isModelCompiled |
slreportgen.utils.isModelLoaded

 slreportgen.utils.isModel

8-167

Introduced in R2020b

8 Functions

8-168

slreportgen.utils.isModelCompiled
Package: slreportgen.utils

Check if model is compiled

Syntax
tf = slreportgen.utils.isModelCompiled(model)

Description
tf = slreportgen.utils.isModelCompiled(model) tests whether the input Simulink model is
compiled.

Examples
Check If Model Is Compiled

load_system('slrgex_sf_car')
tf = slreportgen.utils.isModelCompiled('slrgex_sf_car')

tf =

 logical

 0

In this case, the slrgex_sf_car model is not compiled.

Input Arguments
model — Model to check for being compiled
string | character array

Model to check for being compiled, specified as a string or character array of the model path or
handle.

Output Arguments
tf — Whether model is compiled
true | false

Whether model is compiled, returned as 1 (true) if the model is compiled. Otherwise, it returns 0
(false).

See Also
slreportgen.utils.isModelLoaded | slreportgen.utils.compileModel |
slreportgen.utils.uncompileModel

 slreportgen.utils.isModelCompiled

8-169

Introduced in R2018b

8 Functions

8-170

slreportgen.utils.isModelLoaded
Package: slreportgen.utils

Check if model is loaded

Syntax
tf = slreportgen.utils.isModelLoaded(model)

Description
tf = slreportgen.utils.isModelLoaded(model) tests whether the input Simulink model is
loaded into memory.

Examples
Check If Model Is Loaded

load_system('slrgex_sf_car')
tf = slreportgen.utils.isModelLoaded('slrgex_sf_car')

tf =

 logical

 1

In this case, the slrgex_sf_car model is loaded.

Input Arguments
model — Model to check for being loaded
string | character array

Model to check for being loaded, specified as a string or character array of the model path or handle.

Output Arguments
tf — Whether input model is loaded
true | false

Whether input model is loaded into memory, returned as 1 (true) if the input model is loaded.
Otherwise, it returns 0 (false).

See Also
slreportgen.utils.getModelHandle

Introduced in R2018b

 slreportgen.utils.isModelLoaded

8-171

slreportgen.utils.isModelReferenceBlock
Package: slreportgen.utils

Check if object is Model block

Syntax
tf = slreportgen.utils.isModelReferenceBlock(obj)

Description
tf = slreportgen.utils.isModelReferenceBlock(obj) tests whether the input obj is a
Model block.

Examples
Check If Object Is a Model Block

load_system('slrgex_sf_car')
tf = slreportgen.utils.isModelReferenceBlock('slrgex_sf_car/Engine')

tf =

 logical

 0

In this case, the Engine subsystem in the slrgex_sf_car model is not a Model block.

Input Arguments
obj — Object to check for being a Model block
string | character array

Object to check for being a Model block, specified as a string or character array of the Simulink
object path or handle.

Output Arguments
tf — Whether input is a Model block
true | false

Whether input is a Model block, returned as 1 (true) if the input is a Model block. Otherwise, it
returns 0 (false).

See Also
Simulink.SubSystem.convertToModelReference

8 Functions

8-172

Introduced in R2018b

 slreportgen.utils.isModelReferenceBlock

8-173

slreportgen.utils.isSID
Package: slreportgen.utils

Check if name is Simulink Identifier (SID) string

Syntax
tf = slreportgen.utils.isSID(name)

Description
tf = slreportgen.utils.isSID(name) tests whether the input name is a syntactically correct
Simulink Identifier (SID).

Examples
Check If Input Uses Valid SID Syntax

load_system('f14')

sid_1 = slreportgen.utils.isSID('f14')
sid_2 = slreportgen.utils.isSID('f14/Controller')
sid_3 = slreportgen.utils.isSID('valid_syntax_not_valid_sid')
getsid_4 = Simulink.ID.getSID('f14/Controller');
sid_4 = slreportgen.utils.isSID(getsid_4)

sid_1 =

 logical

 1

sid_2 =

 logical

 0

sid_3 =

 logical

 1

sid_4 =

 logical

 1

8 Functions

8-174

Input Arguments
name — Name to check for being an SID
string | character array

Name to check for being an SID, specified as a string or character array. This utility checks only that
the syntax of the input is valid. It does not check whether the input is a valid SID.

Output Arguments
tf — Whether input is an SID
true | false

Whether input is a syntactically correct SID, returned as 1 (true) if the input is an SID. Otherwise, it
returns 0 (false).

See Also

Introduced in R2018b

 slreportgen.utils.isSID

8-175

slreportgen.utils.isStateTransitionTableBlock
Package: slreportgen.utils

Check if object is Transition Table block

Syntax
tf = slreportgen.utils.isStateTransitionTableBlock(obj)

Description
tf = slreportgen.utils.isStateTransitionTableBlock(obj) tests whether the input obj
is a Stateflow State Transition Table block.

Examples
Check If Block Is a State Transition Table Block

load_system('slrgex_sf_car')
tf = slreportgen.utils.isStateTransitionTableBlock...
 ('slrgex_sf_car/shift_logic/downshifting')

tf =

 logical

 0

In this case, the downshifting object in the Stateflow shift_logic chart of the slrgex_sf_car
model is not a State Transition Table block.

Input Arguments
obj — Object to check for being a Stateflow Transition Table block
string | character array

Object to check for being a Stateflow Transition Table block, specified as a string or character array
of the object path or handle.

Output Arguments
tf — Whether input is a State Transition Table block
true | false

Whether input is a State Transition Table block, returned as 1 (true) if the input is a State Transition
Table block. Otherwise, it returns 0 (false).

8 Functions

8-176

See Also

Introduced in R2018b

 slreportgen.utils.isStateTransitionTableBlock

8-177

slreportgen.utils.isTestSequence
Package: slreportgen.utils

Check if Test Sequence block or object

Syntax
tf = slreportgen.utils.isTestSequence(obj)

Description
tf = slreportgen.utils.isTestSequence(obj) tests if the input obj is a Simulink Test
Sequence block or a Stateflow Test Sequence object.

Examples
Test If Object Is a Test Sequence

load_system('sltestTestSequenceDebouncerExample')
tf = slreportgen.utils.isTestSequence...
 ('sltestTestSequenceDebouncerExample/Debouncer_Test')

tf =

 logical

 1

In this case, the Debouncer_Test block in the sltestTestSequenceDebouncerExample model is
a Test Sequence block.

Input Arguments
obj — Object to check for being a Test Sequence block or object
string | character array | handle

Object to check for being a Test Sequence block or object, specified as a string or character array of
the object path or handle.

Output Arguments
tf — Whether input is a Test Sequence block or object
true | false

Whether input is a Test Sequence block or object, returned as 1 (true) if the input is a Test Sequence.
Otherwise, it returns 0 (false).

See Also
Test Sequence

8 Functions

8-178

Introduced in R2019a

 slreportgen.utils.isTestSequence

8-179

slreportgen.utils.isTruthTable
Package: slreportgen.utils

Check if object is Truth Table

Syntax
tf = slreportgen.utils.isTruthTable(obj)

Description
tf = slreportgen.utils.isTruthTable(obj) tests if the input obj is a Simulink Truth Table
block or a Stateflow Truth Table object.

Examples

Check If Object Is a Truth Table

openExample('sf_climate_control');
tf = slreportgen.utils.isTruthTable...
 ('sf_climate_control/ClimateController')

tf =

 logical

 1

In this case, the ClimateController block in the sf_climate_control model is a Truth Table
block.

Input Arguments
obj — Object to check for being a Truth Table block or object
string | character array

Object to check for being a Truth Table block or object, specified as a string or character array of the
object path or handle.

Output Arguments
tf — Whether input is a Truth Table block or object
true | false

Whether input is a Truth Table block or object, returned as 1 (true) if the input system is a truth
table. Otherwise, it returns 0 (false).

8 Functions

8-180

See Also
slreportgen.report.TruthTable | slreportgen.utils.isLookupTable

Introduced in R2018b

 slreportgen.utils.isTruthTable

8-181

slreportgen.utils.isValidSlSystem
Package: slreportgen.utils

Check if system is valid Simulink system

Syntax
tf = slreportgen.utils.isValidSlSystem(system)

Description
tf = slreportgen.utils.isValidSlSystem(system) tests if the input system is a valid
Simulink block diagram or subsystem block. Use this utility to determine whether a system is in
memory.

Input Arguments
system — System to check for validity
string | character array

System to check for validity, specified as a string or character array of the path or handle of a
Simulink block diagram or subsystem block.

Output Arguments
tf — Whether system is valid
true | false

Whether system is valid, returned as 1 (true) if the input system is valid. Otherwise, it returns 0
(false).

See Also

Introduced in R2018b

8 Functions

8-182

slreportgen.utils.loadAllSystems
Package: slreportgen.utils

Load all systems

Syntax
slreportgen.utils.loadAllSystems(name)

Description
slreportgen.utils.loadAllSystems(name) loads all systems, including masking subsystems
and libraries, into memory for the specified Simulink model name. If the input name is not a model
and is, for example, a block, this utility obtains the containing model and then, loads all of its
systems.

Input Arguments
name — Name or handle of Simulink model or Stateflow object
string | character array

Name or handle of Simulink model or Stateflow object, specified as a string or character array, for
which to load all of its systems.

See Also
slreportgen.utils.isValidSlSystem

Introduced in R2018b

 slreportgen.utils.loadAllSystems

8-183

slreportgen.utils.pathJoin
Package: slreportgen.utils

Combine two diagram path parts

Syntax
diagrampath = slreportgen.utils.pathJoin(parent,name)

Description
diagrampath = slreportgen.utils.pathJoin(parent,name) combines the parent and
name paths to create a full Simulink diagram path. Any newlines are converted to spaces.

Examples
Combine Parent Diagram Path and Diagram Name

slreportgen.utils.pathJoin("slrgex_sf_car/transmission",...
 "transmission ratio")

diagpath =

 "slrgex_sf_car/transmission/transmission ratio"

Input Arguments
parent — Parent diagram path
string | character array

Parent diagram path, specified as a string or character array.

name — Diagram name
string | character array

Diagram name, specified as a string or character array.

Output Arguments
diagrampath — Full diagram path
string

Full diagram path, returned as a string.

See Also
slreportgen.utils.pathSplit | slreportgen.utils.pathParts

Introduced in R2018b

8 Functions

8-184

slreportgen.utils.pathParts
Package: slreportgen.utils

Split diagram path into parent and diagram parts

Syntax
[parent,name] = slreportgen.utils.pathParts(diagramPath)

Description
[parent,name] = slreportgen.utils.pathParts(diagramPath) splits a Simulink diagram
path into its parent diagram path and its diagram name.

Examples
Split Full Diagram Path into Parent and Diagram Parts
[parent,name] = slreportgen.utils.pathParts...
 ('slrgex_sf_car/transmission/transmission ratio')

parent =

 "slrgex_sf_car/transmission"

name =

 "transmission ratio"

Input Arguments
diagramPath — Full diagram path
string | character array

Full diagram path, specified as a string or character array.

Output Arguments
parent — Parent diagram path
string

Parent diagram path, returned as a string.

name — Diagram name
string

Diagram name, returned as a string.

See Also
slreportgen.utils.pathJoin | slreportgen.utils.pathSplit

 slreportgen.utils.pathParts

8-185

Introduced in R2018b

8 Functions

8-186

slreportgen.utils.pathSplit
Package: slreportgen.utils

Split diagram path into array of diagram parts

Syntax
parts = slreportgen.utils.pathSplit(diagrampath)

Description
parts = slreportgen.utils.pathSplit(diagrampath) splits the input Simulink diagram path
into a string array of diagram names.

Examples
Split Diagram Path Into Separate Parts

parts = slreportgen.utils.pathSplit...
 ("slrgex_sf_car/transmission/transmission ratio")

parts =

 1×3 string array

 "slrgex_sf_car" "transmission" "transmission ratio"

Input Arguments
diagrampath — Full diagram path
string | character array

Full diagram path, specified as a string or character array.

Output Arguments
parts — Diagram path parts
string array

Diagram path parts, returned as a string array.

See Also
slreportgen.utils.pathParts | slreportgen.utils.pathJoin

Introduced in R2018b

 slreportgen.utils.pathSplit

8-187

slreportgen.utils.traceSignal
Package: slreportgen.utils

Trace signal to source or destination

Syntax
[blks,ports,portnums] = slreportgen.utils.traceSignal(port)
[blks,ports,portnums] = slreportgen.utils.traceSignal(portArray)
[blks,ports,portnums] = slreportgen.utils.traceSignal(___ ,"Nonvirtual",false)

Description
[blks,ports,portnums] = slreportgen.utils.traceSignal(port) traces the signal
entering or leaving the specified port to the nonvirtual source or destination. If port is an input port,
the function returns the nonvirtual source block, port, and port number of the signal. If port is an
output port, slreportgen.utils.traceSignal returns the nonvirtual destination blocks, ports,
and port numbers of the signal. If the function is unable to trace the signal, it returns -1 as the value
of blks.

[blks,ports,portnums] = slreportgen.utils.traceSignal(portArray) traces the signal
entering or leaving the ports specified by portArray to the nonvirtual sources or destinations. If the
first port in portArray is an output port, the function treats all the ports as output ports. If the first
port is an input port, the function treats all the ports as input ports. If the function is unable to trace
a signal, the blks cell array contains a -1 for the entry corresponding to the untraceable port.

[blks,ports,portnums] = slreportgen.utils.traceSignal(___ ,"Nonvirtual",false)
traces signals to the graphical sources or destinations instead of to the nonvirtual sources or
destinations and can include any of the input arguments in previous syntaxes.

Examples

Trace Block Input Signal

model= 'f14';
load_system(model)
srcBlock = 'f14/Aircraft Dynamics Model/Transfer Fcn.1';
ports = get_param(srcBlock, 'PortHandles');
[sb,sp,spn] = slreportgen.utils.traceSignal(ports.Inport);
fprintf('Block with input signal to trace: %s\n',srcBlock)
fprintf('Source block: %s\n',sb)
fprintf('Source port number: %d\n',spn)
bdclose(model)

Block with input signal to trace: f14/Aircraft Dynamics Model/Transfer Fcn.1
Source block: f14/Aircraft
Dynamics

8 Functions

8-188

Model/Sum2
Source port number: 1

Input Arguments
port — Input or output port
handle

Input or output port, specified as a handle.

portArray — Input or output ports
string scalar | character array

Input or output ports, specified as an array of handles.

Output Arguments
blks — Blocks
-1 | character vector | N-by-1 cell array of character vectors | 1-by-M cell array

Blocks, returned as one of the following values:

• -1, if a signal cannot be traced.
• Character vector, if a signal is traced to a single source or destination.
• N-by-1 cell array of character vectors, if a signal is traced to multiple destinations.
• 1-by-M cell array, if multiple signals are traced. M is the number of signals traced. The cell array

can contain:

• -1, if a signal cannot be traced
• Character vectors for signals that are traced to a single source or destination.
• N-by-1 cell array of character vectors for signals traced to multiple destinations.

ports — Ports
handle | N-by-1 array of handles | M-by-1 cell array

Ports, returned as one of the following values:

• Handle, if a signal is traced to a single source or destination.
• N-by-1 array of handles, if a signal is traced to multiple destinations.
• M-by-1 cell array, if multiple signals are traced. M is the number of signals traced. The cell array

can contain:

• Handles
• N-by-1 array of handles for signals traced to multiple destinations.

portnums — Signal source port number
integer | N-by-1 cell array of integers | 1-by-M cell array

Ports, returned as one of the following values:

• Integer, if a signal is traced to a single source or destination.

 slreportgen.utils.traceSignal

8-189

• N-by-1 cell array of integers, if a signal is traced to multiple destinations.
• 1-by-M cell array, if multiple signals are traced. M is the number of signals traced. The cell array

can contain:

• Integers
• N-by-1 cell array of integers for signals traced to multiple destinations

See Also
slreportgen.report.Signal

Introduced in R2018b

8 Functions

8-190

slreportgen.utils.uncompileModel
Package: slreportgen.utils

Uncompile model

Syntax
slreportgen.utils.uncompileModel(modelname)

Description
slreportgen.utils.uncompileModel(modelname) uncompiles the model specified in the
modelname input. If modelname is a Simulink block or Stateflow object, the model that contains that
block or object is uncompiled.

Input Arguments
modelname — Model to uncompile
character array | string

Model to uncompile, specified as a character array or string of the model handle, block handle, or
Stateflow objects. If modelname is an element in the model, the containing model is uncompiled.

See Also
slreportgen.utils.compileModel | slreportgen.utils.isModelCompiled

Introduced in R2018b

 slreportgen.utils.uncompileModel

8-191

createDiagramLink
Class: slreportgen.webview.EmbeddedWebViewDocument
Package: slreportgen.webview

Link to embedded Web view report

Syntax
diaglink = createDiagramLink(wvdoc,dhandle,domlabel)

Description
diaglink = createDiagramLink(wvdoc,dhandle,domlabel) updates a DOM object in an
embedded Web view Document panel so that it links to a diagram anchor handle in the Simulink Web
view. The diaglink DOM object is of the same type as domlabel or if domlabel is a string, an
mlreportgen.DOM.Text object is created.

Input Arguments
wvdoc — Web view document
slreportgen.webview.WebViewDocument object

Web view document, specified as an slreportgen.webview.WebViewDocument object.

dhandle — Handle of Web view diagram anchor
character vector | object handle

Handle of Web view diagram anchor, specified as a character vector of the path or as an object
handle. You can use the getExportDiagrams method to obtain the diagram paths and handles.
Example: Character vector: 'slrgex_vdp'. Object handle:
get_param('slrgex_vdp','handle')

domlabel — DOM object from which to link
DOM object | character vector

DOM object from which to link, specified as a valid DOM object or as a character vector. If you enter
a character vector, an mlreportgen.DOM.Text object is created.

Output Arguments
diaglink — Diagram link
DOM object

Diagram link to the specified Simulink Web view diagram, returned as a DOM object. The DOM object
has an attribute that marks it as a link.

Examples

8 Functions

8-192

Create a Link to a Web View

Use createDiagramLink to create links from level-two headings in the document pane to the
associated diagrams in the embedded web view. This example also uses createElementLink to
create links from block names in the document pane to blocks in the embedded web view.

Write a class, ExampleWebView, that is a subclass of
slreportgen.webview.EmbeddedWebViewDocument. Use createDiagramLink and
createElementLink in the fillContent method.

classdef ExampleWebView < slreportgen.webview.EmbeddedWebViewDocument

 methods
 function wvdoc = ExampleWebView(reportPath,modelName)
 % Invoke the EmbeddedWebViewDocument constructor, which
 % saves the report path and model name for use by the
 % report's fill methods.
 wvdoc@slreportgen.webview.EmbeddedWebViewDocument(reportPath,modelName);
 end

 function fillContent(wvdoc)
 % Fill the Content hole in the report template with design
 % variable information. You can use DOM or Report API methods
 % to create, format, add, and append content to this report.

 [~, handles] = getExportDiagrams(wvdoc);

 n = numel(handles);
 for i = 1:n
 diagHandle = handles{i};
 diagHeading = createDiagramLink(wvdoc,diagHandle, ...
 mlreportgen.dom.Heading(2,get_param(diagHandle,'Name')));
 append(wvdoc,diagHeading);

 blockFinder = slreportgen.finder.BlockFinder(diagHandle);

 while hasNext(blockFinder)
 r = next(blockFinder);
 elemHandle = r.Object;
 elemHeading = createElementLink(wvdoc,elemHandle, ...
 mlreportgen.dom.Heading(3,get_param(elemHandle,'Name')));

 append(wvdoc,elemHeading);
 end

 end
 end
 end
end

Create an object of the ExampleWebView class and use its methods to generate the embedded web
view report.

model = 'slrgex_vdp';
open_system(model);
wvdoc = ExampleWebView('myReport',model);
open(wvdoc);
fill(wvdoc);

 createDiagramLink

8-193

close(wvdoc);
rptview(wvdoc);

More About
Diagram

Diagram refers to a Simulink model, subsystem, or Stateflow chart.

Element

Element refers to an individual item within a diagram, such as a block, annotation, state, or
transition.

See Also
slreportgen.webview.WebViewDocument |
slreportgen.webview.EmbeddedWebViewDocument | createElementLink |
createElementTwoWayLink | createDiagramTwoWayLink | getExportDiagrams

Topics
“Create Hyperlinks for Embedded Web View Report” on page 5-29
“Embedded Web View Reports” on page 5-20
“Create an Embedded Web View Report Generator” on page 5-24

Introduced in R2017a

8 Functions

8-194

createDiagramTwoWayLink
Class: slreportgen.webview.EmbeddedWebViewDocument
Package: slreportgen.webview

Link and anchor in embedded Web view report

Syntax
diag2link = createDiagramTwoWayLink(wvdoc,dhandle,domlabel)

Description
diag2link = createDiagramTwoWayLink(wvdoc,dhandle,domlabel) creates a two-way
connection between a Simulink Web view diagram and a DOM object in an embedded Web view
Document panel. The diag2link DOM object is updated to include attributes that identifies it as a
link. The diag2link DOM object is of the same type as domlabel or if domlabel is a string, an
mlreportgen.DOM.Text object is created.

Input Arguments
wvdoc — Web view document
slreportgen.webview.WebViewDocument object

Web view document, specified as an slreportgen.webview.WebViewDocument object.

dhandle — Handle of Web view diagram anchor
character vector | object handle

Handle of Web view diagram anchor, specified as a character vector of the path or as an object
handle. You can use the getExportDiagrams method to obtain the diagram paths and handles.
Example: Character vector: 'slrgex_vdp'. Object handle:
get_param('slrgex_vdp','handle')

domlabel — DOM object from which to link
DOM object | character vector

DOM object from which to link, specified as a valid DOM object or as a character vector. If you enter
a character vector, an mlreportgen.DOM.Text object is created.

Output Arguments
diag2link — Diagram link and Web view anchor
DOM object

Diagram link and Web view anchor, returned as a DOM object. The diag2link object connects a
DOM object in the embedded Web view Document panel to the specified Simulink web view diagram.
The DOM object is updated with an attribute that indicates it is a link to the anchor.

 createDiagramTwoWayLink

8-195

Examples

Create Two-Way Diagram Link

Use createDiagramTwoWayLink to create two-way links between level-two headings in the
document pane and the associated diagrams in the embedded web view. This example also uses
createElementTwoWayLink to create links between block names in the document pane and blocks
in the embedded web view.

Write a class, ExampleWebView, that is a subclass of
slreportgen.webview.EmbeddedWebViewDocument. Use createDiagramTwoWayLink and
createElementTwoWayLink in the fillContent method.

classdef ExampleWebView< slreportgen.webview.EmbeddedWebViewDocument

 methods
 function wvdoc = ExampleWebView(reportPath,modelName)
 % Invoke the EmbeddedWebViewDocument constructor, which
 % saves the report path and model name for use by the
 % report's fill methods.
 wvdoc@slreportgen.webview.EmbeddedWebViewDocument(reportPath,modelName);
 end

 function fillContent(wvdoc)
 % Fill the Content hole in the report template with design
 % variable information. You can use DOM or Report API methods
 % to create, format, add, and append content to this report.

 [~, handles] = getExportDiagrams(wvdoc);

 n = numel(handles);
 for i = 1:n
 diagHandle = handles{i};
 diagHeading = createDiagramTwoWayLink(wvdoc,diagHandle, ...
 mlreportgen.dom.Heading(2,get_param(diagHandle,'Name')));
 append(wvdoc,diagHeading);

 blockFinder = slreportgen.finder.BlockFinder(diagHandle);

 while hasNext(blockFinder)
 r = next(blockFinder);
 elemHandle = r.Object;
 elemHeading = createElementTwoWayLink(wvdoc,elemHandle, ...
 mlreportgen.dom.Heading(3,get_param(elemHandle,'Name')));

 append(wvdoc,elemHeading);
 end

 end
 end
 end
end

Create an object of the ExampleWebView class and use its methods to generate the embedded web
view report.

8 Functions

8-196

model = 'slrgex_vdp';
open_system(model);
wvdoc = ExampleWebView('myReport',model);
open(wvdoc);
fill(wvdoc);
close(wvdoc);
rptview(wvdoc);

More About
Diagram

Diagram refers to a Simulink model, subsystem, or Stateflow chart.

Element

Element refers to an individual item within a diagram, such as a block, annotation, state, or
transition.

See Also
slreportgen.webview.WebViewDocument |
slreportgen.webview.EmbeddedWebViewDocument | createElementTwoWayLink |
createDiagramLink | createElementLink | getExportDiagrams

Topics
“Create Hyperlinks for Embedded Web View Report” on page 5-29
“Embedded Web View Reports” on page 5-20
“Create an Embedded Web View Report Generator” on page 5-24

Introduced in R2017a

 createDiagramTwoWayLink

8-197

createElementLink
Class: slreportgen.webview.EmbeddedWebViewDocument
Package: slreportgen.webview

Element link in embedded Web view report

Syntax
elemLink = createElementLink(wvdoc,ehandle,domlabel)

Description
elemLink = createElementLink(wvdoc,ehandle,domlabel) updates a DOM object in an
embedded Web view Document panel so that it links to an element anchor in the Simulink Web view.
The DOM object is of the same type as domlabel or, if domlabel is a string, an
mlreportgen.DOM.Text object is created.

Input Arguments
wvdoc — Web view document
slreportgen.webview.WebViewDocument object

Web view document, specified as an slreportgen.webview.WebViewDocument object.

ehandle — Handle of Web view element anchor
character vector | object handle

Handle of Web view element anchor, specified as a character vector of the path or as an object
handle. You can use the getExportDiagrams method to obtain the element paths and handles.
Example: Character vector: 'slrgex_vdp/Mu'. Object handle: get_param('slrgex_vdp/
Mu','handle')

domlabel — DOM object from which to link
DOM object | character vector

DOM object from which to link, specified as a valid DOM object or as a character vector. If you enter
a character vector, an mlreportgen.DOM.Text object is created.

Output Arguments
elemLink — Element link
array of character vectors

Element link to the specified Simulink Web view element, returned as a DOM object. The DOM object
has an attribute that marks it as a link.

Examples

8 Functions

8-198

Create Link from Element to Diagram

Use CreateElementLink to create links from block names in the document pane to blocks in the
diagram in the embedded web view. This example also uses createDiagramLink to create links
from level two headings in the document pane to diagrams in the embedded web view.

Write a class, ExampleWebView, that is a subclass of
slreportgen.webview.EmbeddedWebViewDocument. Use CreateElementLink and
createDiagramLink in the fillContent method.

classdef ExampleWebView < slreportgen.webview.EmbeddedWebViewDocument

 methods
 function wvdoc = ExampleWebView(reportPath,modelName)
 % Invoke the EmbeddedWebViewDocument constructor, which
 % saves the report path and model name for use by the
 % report's fill methods.
 wvdoc@slreportgen.webview.EmbeddedWebViewDocument(reportPath,modelName);
 end

 function fillContent(wvdoc)
 % Fill the Content hole in the report template with design
 % variable information. You can use DOM or Report API methods
 % to create, format, add, and append content to this report.

 [~, handles] = getExportDiagrams(wvdoc);

 n = numel(handles);
 for i = 1:n
 diagHandle = handles{i};
 diagHeading = createDiagramLink(wvdoc,diagHandle, ...
 mlreportgen.dom.Heading(2,get_param(diagHandle,'Name')));
 append(wvdoc,diagHeading);

 blockFinder = slreportgen.finder.BlockFinder(diagHandle);

 while hasNext(blockFinder)
 r = next(blockFinder);
 elemHandle = r.Object;
 elemHeading = createElementLink(wvdoc,elemHandle, ...
 mlreportgen.dom.Heading(3,get_param(elemHandle,'Name')));

 append(wvdoc,elemHeading);
 end

 end
 end
 end
end

Create an object of the ExampleWebView class and use its methods to generate the embedded web
view report.

model = 'slrgex_vdp';
open_system(model);
wvdoc = ExampleWebView('myReport',model);
open(wvdoc);
fill(wvdoc);

 createElementLink

8-199

close(wvdoc);
rptview(wvdoc);

More About
Diagram

Diagram refers to a Simulink model, subsystem, or Stateflow chart.

Element

Element refers to an individual item within a diagram, such as a block, annotation, state, or
transition.

See Also
slreportgen.webview.WebViewDocument |
slreportgen.webview.EmbeddedWebViewDocument | createElementTwoWayLink |
createDiagramLink | createDiagramTwoWayLink | getExportDiagrams

Topics
“Create Hyperlinks for Embedded Web View Report” on page 5-29
“Embedded Web View Reports” on page 5-20
“Create an Embedded Web View Report Generator” on page 5-24

Introduced in R2017a

8 Functions

8-200

createElementTwoWayLink
Class: slreportgen.webview.EmbeddedWebViewDocument
Package: slreportgen.webview

Element link and anchor in embedded Web view report

Syntax
elem2link = createElementTwoWayLink(wvdoc,ehandle,domlabel)

Description
elem2link = createElementTwoWayLink(wvdoc,ehandle,domlabel) creates a two-way
connection between a Simulink Web view element and a DOM object in an embedded Web view
Document panel. The elem2link DOM object is updated to include attributes that identifies it as a
link. The elem2link DOM object is of the same type as domlabel or if domlabel is a string, an
mlreportgen.DOM.Text object is created.

Input Arguments
wvdoc — Web view document
slreportgen.webview.WebViewDocument object

Web view document, specified as an slreportgen.webview.WebViewDocument object.

ehandle — Handle of Web view element anchor
character vector | object handle

Handle of Web view element anchor, specified as a character vector of the path or as an object
handle. You can use the getExportDiagrams method to obtain the element paths and handles.
Example: Character vector: 'slrgex_vdp/Mu'. Object handle: get_param('slrgex_vdp/
Mu','handle')

domlabel — DOM object from which to link
DOM object | character vector

DOM object from which to link, specified as a valid DOM object or as a character vector. If you enter
a character vector, an mlreportgen.DOM.Text object is created.

Output Arguments
elem2link — Element link and Web view anchor
DOM object

Element link and Web view anchor, returned as a DOM object. The elem2link object connects a
DOM object in the embedded Web view Document panel to the specified Simulink Web view element.
The DOM object is updated with an attribute that indicates it is a link to the anchor.

 createElementTwoWayLink

8-201

Examples

Create Two-Way Element Link in Embedded Web View Report

Use CreateElementTwoWayLink to create two-way links between block names in the document
pane and blocks in the diagram in the embedded web view. This example also uses
createDiagramTwoWayLink to create links between level two headings in the document pane and
diagrams in the embedded web view.

Write a class, ExampleWebView, that is a subclass of
slreportgen.webview.EmbeddedWebViewDocument. Use CreateElementTwoWayLink and
createDiagramTwoWayLink in the fillContent method.

classdef ExampleWebView< slreportgen.webview.EmbeddedWebViewDocument

 methods
 function wvdoc = ExampleWebView(reportPath,modelName)
 % Invoke the EmbeddedWebViewDocument constructor, which
 % saves the report path and model name for use by the
 % report's fill methods.
 wvdoc@slreportgen.webview.EmbeddedWebViewDocument(reportPath,modelName);
 end

 function fillContent(wvdoc)
 % Fill the Content hole in the report template with design
 % variable information. You can use DOM or Report API methods
 % to create, format, add, and append content to this report.

 [~, handles] = getExportDiagrams(wvdoc);

 n = numel(handles);
 for i = 1:n
 diagHandle = handles{i};
 diagHeading = createDiagramTwoWayLink(wvdoc,diagHandle, ...
 mlreportgen.dom.Heading(2,get_param(diagHandle,'Name')));
 append(wvdoc,diagHeading);

 blockFinder = slreportgen.finder.BlockFinder(diagHandle);

 while hasNext(blockFinder)
 r = next(blockFinder);
 elemHandle = r.Object;
 elemHeading = createElementTwoWayLink(wvdoc,elemHandle, ...
 mlreportgen.dom.Heading(3,get_param(elemHandle,'Name')));

 append(wvdoc,elemHeading);
 end

 end
 end
 end
end

Create an object of the ExampleWebView class and use its methods to generate the embedded web
view report.

8 Functions

8-202

model = 'slrgex_vdp';
open_system(model);
wvdoc = ExampleWebView('myReport',model);
open(wvdoc);
fill(wvdoc);
close(wvdoc);
rptview(wvdoc);

More About
Diagram

Diagram refers to a Simulink model, subsystem, or Stateflow chart.

Element

Element refers to an individual item within a diagram, such as a block, annotation, state, or
transition.

See Also
slreportgen.webview.WebViewDocument |
slreportgen.webview.EmbeddedWebViewDocument | createDiagramLink |
createDiagramTwoWayLink | createElementLink | getExportDiagrams

Topics
“Create Hyperlinks for Embedded Web View Report” on page 5-29
“Embedded Web View Reports” on page 5-20
“Create an Embedded Web View Report Generator” on page 5-24

Introduced in R2017a

 createElementTwoWayLink

8-203

getReportObject
Class: slreportgen.webview.EmbeddedWebViewDocument
Package: slreportgen.webview

Returns the report object for an embedded web view report

Syntax
rptobj = getReportObject(rpt)

Description
rptobj = getReportObject(rpt) returns the slreportgen.report.Report object associated
with an embedded web view report. You can use the report object to get the DOM object that
implements a reporter in your report. Examining the DOM implementation can help you to debug
report generation issues.

Input Arguments
rpt — Embedded web view report
object of subclass of slreportgen.webview.EmbeddedWebViewDocument

Embedded web view report, specified as an object of a subclass of
slreportgen.webview.EmbeddedWebViewDocument.

Output Arguments
rptobj — Report object
slreportgen.report.Report

Report object, returned as an slreportgen.report.Report object.

Examples

Get DOM Implemention of a Reporter

Get the report object for an embedded web view report by calling the getReportObject method.
Then, get the DOM object that implements the title page reporter in the report.

Create the embedded web view class used in “Generate an Embedded Web View Report” on page 5-
35.

classdef SystemDesignVariables < slreportgen.webview.EmbeddedWebViewDocument

 methods
 function rpt = SystemDesignVariables(reportPath, modelName)

 rpt@slreportgen.webview.EmbeddedWebViewDocument(reportPath,...

8 Functions

8-204

 modelName);

 rpt.ValidateLinksAndAnchors = false;

 rpt.ExportOptions.IncludeMaskedSubsystems = true;
 rpt.ExportOptions.IncludeSimulinkLibraryLinks = true;
 rpt.ExportOptions.IncludeReferencedModels = true;
 end

 function fillContent(rpt)
 import mlreportgen.dom.*
 import mlreportgen.report.*

 model = getExportModels(rpt);
 model= model{1};
 tp = TitlePage("Title",[model " Report"],"Author","");
 add(rpt,tp);
 finder = slreportgen.finder.ModelVariableFinder(model);
 ch = Chapter("Variables");
 while hasNext(finder)
 result = next(finder);
 s = Section(result.Name);
 reporter = getReporter(result);
 add(s,reporter);
 add(ch,s);
 end
 add(rpt,ch);
 end
 end
end

Using the MATLAB Editor, set a breakpoint at this line:

add(rpt,tp);

Run a script to generate the embedded web view report.

model = 'f14';
rptName = sprintf('%sVariables', model);
load_system(model);
rpt = SystemDesignVariables(rptName, model);
fill(rpt);
close(rpt);
close_system(model);
rptview(rptName);

MATLAB pauses at the breakpoint.

In the Editor, at the command prompt, run these commands:

rptObj = getReportObject(rpt);
impl = getImpl(tp,rptObj)

The DOM implementation for the title page reporter displays.

To end the debugging session, click Quit Debugging.

 getReportObject

8-205

To clear the breakpoint, right-click the breakpoint icon and select Clear Breakpoint from the
context menu.

See Also
slreportgen.report.Report

Topics
“Generate an Embedded Web View Report” on page 5-35
“Debug MATLAB Code Files”

Introduced in R2019b

8 Functions

8-206

fill
Class: slreportgen.webview.WebViewDocument
Package: slreportgen.webview

Fill report holes

Syntax
fill(wvdoc)

Description
fill(wvdoc) fills the holes in the report generated by wvdoc. This method loops through the holes
in the report’s template. For each hole, it determines if this object has a method named
fillId(wvdoc), where Id is the id of the hole. If the method exists, this method invokes the method
to fill the hole.

Input Arguments
wvdoc — Web view document
slreportgen.webview.WebViewDocument object

Web view document, specified as an slreportgen.webview.WebViewDocument object.

Tips
• The default template specified by wvdoc contains a hole named slwebview. Thus invoking this

method will invoke slreportgen.webview.WebViewDocument.fillslwebview to fill the hole
with web views of the model(s) specified by wvdoc’s ExportOptions property.

• This method allows you to fill holes in a custom template by deriving a class from
slreportgen.webview.WebViewDocument and providing the derived class with fillId
methods to fill the holes.

 fill

8-207

append
Class: slreportgen.webview.WebViewDocument
Package: slreportgen.webview

Append content to a web view document

Syntax
append(wvdoc,content)

Description
append(wvdoc,content) appends content to the web view document. You can append any type of
content that can be appended to an mlreportgen.dom.Document object.

Input Arguments
wvdoc — Web view document
slreportgen.webview.WebViewDocument object

Web view document, specified as an slreportgen.webview.WebViewDocument object.

content — Objects to be appended to the web view document
Any MATLAB or DOM objects that can be appended to an mlreportgen.dom.Document object.

The value of this object can be any type of MATLAB or DOM API object that can be appended to a
DOM document.

Tips
• Use this method to fill holes in a custom template that you create to be used with

slreportgen.webview.WebViewDocument or
slreportgen.webview.EmbeddedWebViewDocument objects.

• To fill the Content hole defined by the default template specified by a class that you derive from
slreportgen.webview.EmbeddedWebViewDocument class, define a fillContent method in
your derived class and use this method in the fillContent method to fill the hole with document
content. See fillfor more information.

8 Functions

8-208

fillslwebview
Class: slreportgen.webview.WebViewDocument
Package: slreportgen.webview

Create and insert a web view in an HTML document

Syntax
fillslwebview(wvdocgen)

Description
fillslwebview(wvdocgen) creates the web view specified by the ExportOptions property of the
specified web view document generator (i.e., wvdocgen) and inserts the web view in the generator’s
output document at the location specified by an slwebview hole in the generator’s document
template.

Input Arguments
wvdocgen — Web view document
slreportgen.webview.WebViewDocument object

Web view document, specified as an slreportgen.webview.WebViewDocument object.

See Also
fill

Introduced in R2017a

 fillslwebview

8-209

getExportDiagrams
Class: slreportgen.webview.WebViewDocument
Package: slreportgen.webview

Get names of diagram paths and handles to export

Syntax
[paths,handles] = getExportDiagrams(wvdoc)

Description
[paths,handles] = getExportDiagrams(wvdoc) returns an array of diagram paths and
handles to export.

Examples

Get Diagram Paths and Handles

Get the paths and handles for a Web view of the f14 Simulink model and subsystems.

f14
wvdoc = slreportgen.webview.WebViewDocument('myWebview','f14');
[paths,handles] = getExportDiagrams(wvdoc)

paths =

 5×1 cell array

 'f14'
 'f14/Aircraft Dynamics Model'
 'f14/Controller'
 'f14/Dryden Wind Gust Models'
 'f14/Nz pilot calculation'

handles =

 5×1 cell array

 [2.0001]
 [7.0001]
 [39.0001]
 [69.0004]
 [84.0001]

Input Arguments
wvdoc — Web view document
slreportgen.webview.WebViewDocument object

8 Functions

8-210

Web view document, specified as an slreportgen.webview.WebViewDocument object.

Output Arguments
paths — Diagram paths
cell array of character vectors

Diagram paths in the model, including the model name and its subsystem names, returned as a cell
array of character vectors.

handles — Diagram handles
array of character vectors

Diagram handles that correspond to the diagram paths. returned as an array of character vectors.

More About
Diagram

Diagram refers to a Simulink model, subsystem, or Stateflow chart.

Element

Element refers to an individual item within a diagram, such as a block, annotation, state, or
transition.

See Also
getExportModels | getExportSimulinkSubSystems | getExportStateflowCharts |
getExportStateflowDiagrams

Introduced in R2017a

 getExportDiagrams

8-211

getExportModels
Class: slreportgen.webview.WebViewDocument
Package: slreportgen.webview

Model paths and handles to export

Syntax
[paths,handles] = getExportModels(wvdoc)

Description
[paths,handles] = getExportModels(wvdoc) returns an array of model paths and handles to
export.

Input Arguments
wvdoc — Web view document
slreportgen.webview.WebViewDocument object

Web view document, specified as an slreportgen.webview.WebViewDocument object.

Output Arguments
paths — Model paths
array of character vectors

Model paths in the model, returned as an array of character vectors.

handles — Diagram handles
array of character vectors

Diagram handles that correspond to the diagram paths. returned as an array of character vectors.

Examples

Get Model Paths and Handles

Get the path and handle for a Web view of the f14 Simulink model.

f14
wvdoc = slreportgen.webview.WebViewDocument('myWebview','f14');
[path,handle] = getExportModels(wvdoc)

path =

 cell

 'f14'

8 Functions

8-212

handle =

 100.0002

See Also
getExportDiagrams | getExportSimulinkSubSystems | getExportStateflowCharts |
getExportStateflowDiagrams

Introduced in R2017a

 getExportModels

8-213

getExportSimulinkSubSystems
Class: slreportgen.webview.WebViewDocument
Package: slreportgen.webview

Subsystem paths and handles to export

Syntax
[paths,handles] = getExportDiagrams(wvdoc)

Description
[paths,handles] = getExportDiagrams(wvdoc) returns a cell array of subsystem paths and
handles to export.

Input Arguments
wvdoc — Web view document
slreportgen.webview.WebViewDocument object

Web view document, specified as an slreportgen.webview.WebViewDocument object.

Output Arguments
paths — Subsystem paths
cell array of character vectors

Subsystem paths in the model, returned as a cell array of character vectors.

handles — Subsystem handles
array of character vectors

Subsystem handles that correspond to the Subsystem paths, returned as an array of character
vectors.

Examples

Get Simulink Subsystems Paths and Handles

Get the paths and handles for a Web view of the f14 Simulink subsystems.

f14
wvdoc = slreportgen.webview.WebViewDocument('myWebview','f14');
[paths,handles] = getExportSimulinkSubSystems(wvdoc)

paths =

 4×1 cell array

8 Functions

8-214

 'f14/Aircraft Dynamics Model'
 'f14/Controller'
 'f14/Dryden Wind Gust Models'
 'f14/Nz pilot calculation'

handles =

 105.0001
 137.0001
 167.0004
 182.0001

More About
Diagram

Diagram refers to a Simulink model, subsystem, or Stateflow chart.

Element

Element refers to an individual item within a diagram, such as a block, annotation, state, or
transition.

See Also
getExportModels | getExportDiagrams | getExportStateflowCharts |
getExportStateflowDiagrams

Introduced in R2017a

 getExportSimulinkSubSystems

8-215

getExportStateflowCharts
Class: slreportgen.webview.WebViewDocument
Package: slreportgen.webview

Stateflow chart paths and handles to export

Syntax
[paths,handles] = getExportStateflowCharts(wvdoc)

Description
[paths,handles] = getExportStateflowCharts(wvdoc) returns an array of the Stateflow
chart paths and handles at the top level of the model to export.

Input Arguments
wvdoc — Web view document
slreportgen.webview.WebViewDocument object

Web view document, specified as an slreportgen.webview.WebViewDocument object.

Output Arguments
paths — Stateflow chart paths
cell array of character vectors

Stateflow chart paths in the model, returned as a cell array of character vectors.

handles — Diagram handles
array of character vectors

Stateflow chart handles that correspond to the paths. returned as an array of character vectors.

Examples

Get Stateflow Charts Paths and Handles

Get the paths and handles for Stateflow charts in the sf_cdplayer Simulink model.

openExample('sf_cdplayer');
wvdoc = slreportgen.webview.WebViewDocument('myWebview','sf_cdplayer');
[paths,handles] = getExportStateflowCharts(wvdoc)

paths =

 3×1 cell array

 {'sf_cdplayer/CD Player Behavior Model' }

8 Functions

8-216

 {'sf_cdplayer/Media Player Mode Manager'}
 {'sf_cdplayer/User Request' }

handles =

 Stateflow.Chart: 1-by-3

See Also
getExportModels | getExportDiagrams | getExportSimulinkSubSystems |
getExportStateflowDiagrams

Introduced in R2017a

 getExportStateflowCharts

8-217

getExportStateflowDiagrams
Class: slreportgen.webview.WebViewDocument
Package: slreportgen.webview

Stateflow chart hierarchy paths and handles to export

Syntax
[paths,handles] = getExportStateflowDiagrams(wvdoc)

Description
[paths,handles] = getExportStateflowDiagrams(wvdoc) returns an array of Stateflow
chart paths and handles to export. The paths and handles are returned for both charts at the top level
of the model and all charts in the hierarchy.

Input Arguments
wvdoc — Web view document
slreportgen.webview.WebViewDocument object

Web view document, specified as an slreportgen.webview.WebViewDocument object.

Output Arguments
paths — Stateflow diagram paths
cell array of character vectors

Stateflow diagram paths in the model, returned as a cell array of character vectors.

handles — Stateflow diagram handles
array of character vectors

Stateflow diagram handles that correspond to the Stateflow diagram paths. returned as an array of
character vectors.

Examples

Get Stateflow Diagrams Paths and Handles

Get the paths and handles for Stateflow diagrams in the sf_cdplayer Simulink model.

openExample('sf_cdplayer');
wvdoc = slreportgen.webview.WebViewDocument('myWebview','sf_cdplayer');
[paths,handles] = getExportStateflowDiagrams(wvdoc)

paths =

8 Functions

8-218

 7×1 cell array

 {'sf_cdplayer/CD Player Behavior Model' }
 {'sf_cdplayer/Media Player Mode Manager' }
 {'sf_cdplayer/Media Player Mode Manager/AMMode' }
 {'sf_cdplayer/Media Player Mode Manager/CDMode' }
 {'sf_cdplayer/Media Player Mode Manager/CDMode/Play'}
 {'sf_cdplayer/Media Player Mode Manager/FMMode' }
 {'sf_cdplayer/User Request' }

handles =

 Stateflow.Object: 1-by-7

See Also
getExportModels | getExportDiagrams | getExportSimulinkSubSystems

Introduced in R2017a

 getExportStateflowDiagrams

8-219

slwebview
Export Simulink models to web views

Syntax
slwebview
filename = slwebview(system_name)
filename = slwebview(folder)
filename = slwebview(system_name,Name,Value)

Description
slwebview starts the web view dialog box in the Report Explorer.

filename = slwebview(system_name) exports the subsystem system_name and its child
systems to the file filename.

filename = slwebview(folder) exports all models in a folder. See “RecurseFolder” on page 8-
0 to include models in subfolders.

filename = slwebview(system_name,Name,Value) provides additional options specified by
one or more Name,Value pairs.

Examples

Export Web View for a Subsystem

Open the slrgex_fuelsys model.

open_system("slrgex_fuelsys")

Export the Engine Gas Dynamics subsystem and the system that contains it to a web view. Do not
export the subsystems that it contains.

fuelsys_web_view1 = slwebview(...
"slrgex_fuelsys/Engine Gas Dynamics","SearchScope","CurrentAndAbove")

Navigate to the Engine_Gas_Dynamics folder and open webview.html in a web browser. See
“Display and Navigate a Web View” on page 5-5. Here is the web view:

8 Functions

8-220

Export Web View with Access to Referenced Models

Open the slrgex_fuelsys model.

open_system("slrgex_fuelsys")

Export the model to a web view and allow access to the models it references.

fuelsys_web_view2 = slwebview(...
"slrgex_fuelsys","FollowModelReference","on")

Navigate to the slrgex_fuelsys folder and open webview.html in a web browser. See “Display
and Navigate a Web View” on page 5-5. Here is the web view:

 slwebview

8-221

Click the fuel_rate_control block to see its properties. Double-click the fuel_rate_control block to
display the referenced model.

Input Arguments
system_name — System to export to a web view file
string containing the path to the system | handle to a subsystem or block diagram | handle to a chart
or subchart

Exports the specified system or subsystem and its child systems to a web view file. By default, child
systems of the system_name system are also exported. Use the SearchScope name-value pair to
export other systems, in relation to system_name.

folder — Path to file folder of models to export
string containing the path to the file folder

Path to the file folder containing one or more models to export to a web view file, specified as a
string. All models in the folder are exported.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: htmlFileName = slwebview(gcs,'LookUnderMasks','all',...
'FollowLinks','on') Export to a web view all layers of the model hierarchy to which the current
system belongs, including the ability to interact with library links and masks.

SearchScope — Systems to export, relative to the system_name system
'CurrentAndBelow' (default) | 'Current' | 'CurrentAndAbove' | 'All'

'CurrentAndBelow' exports the Simulink system or the Stateflow chart specified by system_name
and all systems or charts that it contains.

'Current' exports only the Simulink system or the Stateflow chart specified by system_name.

'CurrentAndAbove' exports the Simulink system or the Stateflow chart specified by the
system_name and all systems or charts that contain it.

'All' exports all Simulink systems or Stateflow charts in the model that contains the system or chart
specified by system_name.
Data Types: char

LookUnderMasks — Whether to export the ability to interact with masked blocks
'none' (default) | 'all'

'none' does not export masked blocks in the web view. Masked blocks are included in the exported
systems, but you cannot access the contents of the masked blocks.

'all' exports all masked blocks.
Data Types: char

8 Functions

8-222

FollowLinks — Whether to follow links into library blocks
'off' (default) | 'on'

'off' does not allow you to follow links into library blocks in a web view.

'on' allows you to follow links into library blocks in a web view.
Data Types: char

FollowModelReference — Whether to access referenced models in a web view
'off' (default) | 'on'

'off' does not allow you to access referenced models in a web view.

'on' allows you to access referenced models in a web view.
Data Types: char

RecurseFolder — Whether to export models in subfolders
false (default) | true

Whether to export models in subfolders to a web View file, specified as a logical. If false, the web
view includes models only in the top-level folder and does not include models in subfolders. If true,
models in subfolders are also included. This property applies only if you specify a folder as an input
argument.

PackageName — Name of the web view output package
model name (default)

Name of the web view output package, specified as a character vector. The web view output is a .zip
file or folder of unzipped web view files, or both types of outputs.
Data Types: char

PackageFolder — Path of folder in which to place the packaged web view output
current working directory (default)

Path in which to place the packaged web view, specified as a character vector. To save the packaged
web view in the same folder as the model, use $model as the PackageFolder.
Data Types: char

PackagingType — Type of web view output package
'both' (default) | 'zipped' | 'unzipped'

Type of web view output package, specified as a zipped file, a folder of unzipped files, or both a
zipped file and folder of unzipped files.
Data Types: char

OptionalViews — Optional views to include
{} (default) | cell array

Optional views to include, specified as a cell array that contains one or both of these values:

• 'requirements'
• 'coverage'

 slwebview

8-223

See “Include Model Requirements and Coverage Data in a Web View” on page 5-18.

ViewFile — Whether to display the web view in a web browser when you export the web
view
true (default) | false

true displays the web view in a web browser when you export the web view.

false does not display the web view in a web browser when you export the web view.
Data Types: logical

ShowProgressBar — Whether to display the status bar when you export a web view
true (default) | false

true displays the status bar when you export a web view.

false does not display the status bar when you export a web view.
Data Types: logical

Output Arguments
filename — The name of the HTML file for displaying the web view
string

Reports the name of the HTML file for displaying the web view. Exporting a web view creates the
supporting files, in a folder.

Tips
A web view is an interactive rendition of a model that you can view in a web browser. You can
navigate a web view hierarchically to examine specific subsystems and to see properties of blocks and
signals.

You can use web views to share models with people who do not have Simulink installed.

Web views require a web browser that supports Scalable Vector Graphics (SVG).

See Also
Topics
“Create and Use a Web View of a Model” on page 5-12
“Display and Navigate a Web View” on page 5-5

Introduced in R2006a

8 Functions

8-224

	Getting Started
	Simulink Report Generator Product Description
	Key Features

	Relationship Between Simulink Report Generator and MATLAB Report Generator
	Finders and Reporters
	Web Views and Embedded Web Views

	System Design Documentation and Results Reporting
	Types of Reports
	System Design Documentation
	Results Reporting

	Report Generation for Simulink and Stateflow Elements
	Simulink Report API Classes
	Find and Report on Blocks in a Model
	Use Specific Finders and Reporters for Different Block Types
	Find and Report on Stateflow Elements

	Generate Reports Without Customizing
	Predefined Standard Reports
	Report API
	Web View

	Report Creation Workflow
	Report Components
	About Report Components
	Report Structure Components
	System-Based Components
	User-Supplied Information Components
	Dynamic Reporting Components
	Format Control at the Component Level

	Working with the Report Explorer
	About the Report Explorer

	Acknowledgments

	Generate System Design Description Reports
	System Design Description
	Predefined Standard Reports
	What Is the System Design Description?
	What You Can Do with the Report
	Report Contents

	Generate a System Design Description Report
	Customize the System Design Description
	Using the Report Explorer to Customize the Report
	Building a Dialog Box for a Custom Report Setup File

	Generate a System Design Report with the Report API

	System Design Description
	System Design Description Dialog Box
	System Design Description Overview
	Title
	Subtitle
	Authors
	Image
	Legal Notice
	Design details
	Model references
	Subsystems from custom libraries
	Requirements traceability
	Glossary and report explanation
	File format
	Stylesheet or Template
	File name
	Folder
	If report exists, increment name to prevent overwriting
	Package type

	Creating Simulink Reports
	Create a Simulink Report Generator Report
	Report on MATLAB Function
	Find and Report on MATLAB Function Blocks
	Find and Report on Stateflow MATLAB Functions
	Customize MATLAB Function Reporter Output

	Use Simulink Report Explorer Components in a Report API Report
	Create the Report Explorer Setup File
	Create a Report Generator Program

	Report Systems Hierarchically
	Customize Simulink Diagram Hyperlinks in HTML and PDF Reports
	Tile Simulink Diagrams
	Create a Simulink Bus Object Report
	Report System Inputs and Outputs
	Reporting on DocBlock Blocks
	Report Model Notes
	Report Execution Order of Tasks and Blocks in a Simulink System
	Create a Simulink Report Generator Report Interactively
	Specify Report Options in the Setup File
	Add Report Content with Components
	Generate the Report

	Generate a Report Associated with a Model
	Logical and Looping Components
	Filter with Loop Context Functions
	Create and Save the Setup File
	Add Components
	Run the Report

	Loop Context Functions
	For Simulink Modeling Elements
	For Stateflow Modeling Elements

	Export Simulink Models to Web Views
	Web Views
	What Is a Web View?
	System Requirements
	Web View Files

	Export Models to Web View Files
	Display and Navigate a Web View
	Display a Web View When You Export It
	Open a Web View File in a Web Browser
	View Contents of a System
	View Block Parameters and Signal Properties
	Access Optional Web View Information

	Search a Web View
	Perform a Search
	Sort Search Results
	Navigate Between Search Results and Model Elements

	Create and Use a Web View of a Model
	Set Up the Browser
	Open the Model
	Create a Folder for the Web View Files
	Export the Model to a Web View
	Navigate a Web View
	Navigate the Web View of the slrgex_fuelsys Model
	Display Parameters and Properties of Blocks and Signals
	Move and Zoom in on Diagrams in the Model Viewer Pane
	Open the Web View Outside of MATLAB

	Include Model Requirements and Coverage Data in a Web View
	Prepare the Model for an Optional Web View
	Add Optional Views to a Web View Using the Web View Dialog Box
	Add Optional Web Views Using slwebview
	Open an Optional Web View

	Embedded Web View Reports
	What Is Embedded Web View?
	Navigating an Embedded Web View Report
	Embedded Web View Packaging
	View Embedded Web View Reports

	Create an Embedded Web View Report Generator
	Create an Embedded Web View Report Generator Class

	Specify Export Options for Embedded Web View Report
	Specify Document Content for Embedded Web View Report
	Generate Table of Contents for Embedded Web View Report
	Get Model Objects for Embedded Web View Report
	Create Hyperlinks for Embedded Web View Report
	Suppress Link Warning Messages for Embedded Web View Report
	Generate an Embedded Web View Report
	Class Definition File for an Embedded Web View

	Web View
	Web View Export Dialog Box Overview
	Systems to Export
	Referenced Models
	Library Links
	MathWorks Library Links
	Masked Subsystems
	Package name
	Folder
	If package exists, increment name to prevent overwriting
	Package Type
	Include Model Coverage view
	Include Embedded Coder view
	Include Requirements view
	Include Coverage view

	Components
	Annotation Loop
	Block Execution Order List
	Block Loop
	Block Type Count
	Bus
	C Function
	Chart Loop
	Code Generation Summary
	Data Dictionary Traceability Table
	Documentation
	Fixed Point Block Loop
	Fixed Point Logging Options
	Fixed Point Property Table
	Fixed Point Summary Table
	Import Generated Code
	Look-Up Table
	Machine Loop
	Missing Requirements Block Loop
	MATLAB Code Traceability Table
	MATLAB Function
	Missing Requirements System Loop
	Model Advisor Report
	Model Change Log
	Model Configuration Set
	Model Loop
	Model Simulation
	Object Loop
	Requirements Block Loop
	Requirements Documents Table
	Requirements Signal Loop
	Requirements Summary Table
	Requirements System Loop
	Requirements Table
	Scope Snapshot
	Signal Loop
	Simulink Automatic Table
	Simulink Data Dictionary
	Simulink Data Dictionary Loop
	Simulink Dialog Snapshot
	Simulink Function System Loop
	Simulink Functions and Variables
	Simulink Library Information
	Simulink Linking Anchor
	Simulink Name
	Simulink Property
	Simulink Property Table
	Simulink Sample Time
	Simulink Summary Table
	Simulink Test Suite Traceability Table
	Simulink Workspace Variable
	Simulink Workspace Variable Loop
	State Loop
	State Transition Matrix
	State Transition Table
	Stateflow Automatic Table
	Stateflow Count
	Stateflow Dialog Snapshot
	Stateflow Filter
	Stateflow Hierarchy
	Stateflow Hierarchy Loop
	Stateflow Linking Anchor
	Stateflow Name
	Stateflow Property
	Stateflow Property Table
	Stateflow Snapshot
	Stateflow Summary Table
	System Filter
	System Hierarchy
	System Loop
	System Snapshot
	Test Sequence
	To Workspace Plot
	Truth Table

	Classes
	slreportgen.webview.EmbeddedWebViewDocument
	slreportgen.report.Bus
	slreportgen.report.BusObject
	slreportgen.report.CFunction
	slreportgen.report.DataDictionary
	slreportgen.report.Diagram
	slreportgen.report.DocBlock
	slreportgen.report.ElementDiagram
	slreportgen.report.ExecutionOrder
	slreportgen.report.LookupTable
	slreportgen.report.MATLABFunction
	slreportgen.report.ModelConfiguration
	slreportgen.report.ModelVariable
	slreportgen.report.Notes
	slreportgen.report.Report
	slreportgen.report.Reporter
	slreportgen.report.RptFile
	slreportgen.report.Signal
	slreportgen.report.SimulinkObjectProperties
	slreportgen.report.StateflowObjectProperties
	slreportgen.report.SystemHierarchy
	slreportgen.report.SystemIO
	slreportgen.report.TestSequence
	slreportgen.report.TruthTable
	slreportgen.finder.AnnotationFinder
	slreportgen.finder.BlockFinder
	slreportgen.finder.BlockResult
	slreportgen.finder.ChartDiagramFinder
	slreportgen.finder.DataDictionaryFinder
	slreportgen.finder.DataDictionaryResult
	slreportgen.finder.DiagramElementFinder
	slreportgen.finder.DiagramFinder
	slreportgen.finder.DiagramElementResult
	slreportgen.finder.DiagramResult
	slreportgen.finder.ModelVariableFinder
	slreportgen.finder.ModelVariableResult
	slreportgen.finder.SignalFinder
	slreportgen.finder.SignalResult
	slreportgen.finder.StateFinder
	slreportgen.finder.StateflowDiagramElementFinder
	slreportgen.finder.SystemDiagramFinder
	slreportgen.utils.HierarchyNumber
	slreportgen.webview.ExportOptions
	slreportgen.webview.WebViewDocument

	Functions
	slreportgen.finder.BlockResult.getDiagramReporter
	slreportgen.finder.BlockResult.getReporter
	slreportgen.finder.DiagramElementResult.getDiagramReporter
	slreportgen.finder.DiagramElementResult.getReporter
	slreportgen.finder.DiagramResult.getReporter
	slreportgen.finder.ModelVariableResult.getReporter
	slreportgen.finder.ModelVariableResult.getVariableID
	slreportgen.finder.ModelVariableResult.getVariableValue
	slreportgen.report.Bus.createTemplate
	slreportgen.report.Bus.customizeReporter
	slreportgen.report.Bus.getClassFolder
	slreportgen.report.BusObject.createTemplate
	slreportgen.report.BusObject.customizeReporter
	slreportgen.report.BusObject.getClassFolder
	slreportgen.report.CFunction.createTemplate
	slreportgen.report.CFunction.customizeReporter
	slreportgen.report.CFunction.getClassFolder
	slreportgen.report.DataDictionary.createTemplate
	slreportgen.report.DataDictionary.customizeReporter
	slreportgen.report.DataDictionary.getClassFolder
	slreportgen.report.Diagram.createTemplate
	slreportgen.report.Diagram.customizeReporter
	slreportgen.report.Diagram.getClassFolder
	slreportgen.report.Diagram.getSnapshotImage
	slreportgen.report.DocBlock.createTemplate
	slreportgen.report.DocBlock.customizeReporter
	slreportgen.report.DocBlock.getClassFolder
	slreportgen.report.ElementDiagram.createTemplate
	slreportgen.report.ElementDiagram.customizeReporter
	slreportgen.report.ElementDiagram.getClassFolder
	slreportgen.report.ElementDiagram.getSnapshotImage
	slreportgen.report.ExecutionOrder.createTemplate
	slreportgen.report.ExecutionOrder.customizeReporter
	slreportgen.report.ExecutionOrder.getClassFolder
	slreportgen.report.LookupTable.createTemplate
	slreportgen.report.LookupTable.customizeReporter
	slreportgen.report.LookupTable.getClassFolder
	slreportgen.report.MATLABFunction.createTemplate
	slreportgen.report.MATLABFunction.customizeReporter
	slreportgen.report.MATLABFunction.getClassFolder
	slreportgen.report.ModelConfiguration.createTemplate
	slreportgen.report.ModelConfiguration.customizeReporter
	slreportgen.report.ModelConfiguration.getClassFolder
	slreportgen.report.ModelConfiguration.getConfigSet
	slreportgen.report.ModelVariable.createTemplate
	slreportgen.report.ModelVariable.customizeReporter
	slreportgen.report.ModelVariable.getClassFolder
	slreportgen.report.ModelVariable.getVariableName
	slreportgen.report.ModelVariable.getVariableValue
	slreportgen.report.Notes.createTemplate
	slreportgen.report.RptFile.createTemplate
	slreportgen.report.Notes.customizeReporter
	slreportgen.report.Notes.getClassFolder
	slreportgen.report.Reporter.copy
	slreportgen.report.Reporter.createTemplate
	slreportgen.report.Reporter.customizeReporter
	slreportgen.report.Reporter.getClassFolder
	slreportgen.report.Reporter.getImpl
	slreportgen.report.RptFile.customizeReporter
	slreportgen.report.RptFile.getClassFolder
	slreportgen.report.Signal.createTemplate
	slreportgen.report.Signal.customizeReporter
	slreportgen.report.Signal.getClassFolder
	slreportgen.report.SimulinkObjectProperties.createTemplate
	slreportgen.report.SimulinkObjectProperties.customizeReporter
	slreportgen.report.SimulinkObjectProperties.getClassFolder
	slreportgen.report.StateflowObjectProperties.createTemplate
	slreportgen.report.StateflowObjectProperties.customizeReporter
	slreportgen.report.StateflowObjectProperties.getClassFolder
	slreportgen.report.SystemHierarchy.createTemplate
	slreportgen.report.SystemHierarchy.customizeReporter
	slreportgen.report.SystemHierarchy.getClassFolder
	slreportgen.report.SystemIO.createTemplate
	slreportgen.report.SystemIO.customizeReporter
	slreportgen.report.SystemIO.getClassFolder
	slreportgen.report.TestSequence.createTemplate
	slreportgen.report.TestSequence.customizeReporter
	slreportgen.report.TestSequence.getClassFolder
	slreportgen.report.TruthTable.createTemplate
	slreportgen.report.TruthTable.customizeReporter
	slreportgen.report.TruthTable.getClassFolder
	slreportgen.utils.block2chart
	slreportgen.utils.compileModel
	slreportgen.utils.getCurrentEditorView
	slreportgen.utils.getDisplayIcon
	slreportgen.utils.getModelHandle
	slreportgen.utils.getObjectID
	slreportgen.utils.getResolvedParamValue
	slreportgen.utils.getSlSfHandle
	slreportgen.utils.hasDiagram
	slreportgen.utils.isBusSelector
	slreportgen.utils.isCommented
	slreportgen.utils.isDocBlock
	slreportgen.utils.isLookupTable
	slreportgen.utils.isMaskedSystem
	slreportgen.utils.isMATLABFunction
	slreportgen.utils.isModel
	slreportgen.utils.isModelCompiled
	slreportgen.utils.isModelLoaded
	slreportgen.utils.isModelReferenceBlock
	slreportgen.utils.isSID
	slreportgen.utils.isStateTransitionTableBlock
	slreportgen.utils.isTestSequence
	slreportgen.utils.isTruthTable
	slreportgen.utils.isValidSlSystem
	slreportgen.utils.loadAllSystems
	slreportgen.utils.pathJoin
	slreportgen.utils.pathParts
	slreportgen.utils.pathSplit
	slreportgen.utils.traceSignal
	slreportgen.utils.uncompileModel
	slreportgen.webview.EmbeddedWebViewDocument.createDiagramLink
	slreportgen.webview.EmbeddedWebViewDocument.createDiagramTwoWayLink
	slreportgen.webview.EmbeddedWebViewDocument.createElementLink
	slreportgen.webview.EmbeddedWebViewDocument.createElementTwoWayLink
	slreportgen.webview.EmbeddedWebViewDocument.getReportObject
	slreportgen.webview.WebViewDocument.fill
	slreportgen.webview.WebViewDocument.append
	slreportgen.webview.WebViewDocument.fillslwebview
	slreportgen.webview.WebViewDocument.getExportDiagrams
	slreportgen.webview.WebViewDocument.getExportModels
	slreportgen.webview.WebViewDocument.getExportSimulinkSubSystems
	slreportgen.webview.WebViewDocument.getExportStateflowCharts
	slreportgen.webview.WebViewDocument.getExportStateflowDiagrams
	slwebview

